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Resumo

Oliveira, Hermógenes Hebert Pereira. Investigations on Proof-Theoretic Se-
mantics. Goiânia, 2014. 71 páginas. Dissertação de Mestrado. Faculdade de
Filosofia, Universidade Federal de Goiás.

As semânticas construtivas oferecem uma nova abordagem semântica para as
constantes lógicas. Essas semânticas gozam de fortes motivações filosóficas ad-
vindas da filosofia da linguagem e da filosofia da matemática. Nós investigamos
essa nova abordagem semântica da lógica e sua concepção de validade lógica sob
a luz de suas próprias aspirações filosóficas, em especial aquelas representadas
pelo trabalho de Dummett (1991). Dentre nossos resultados, destacamos a vali-
dade da Regra de Peirce em relação ao procedimento justificatório baseado nas
regras de introdução para as constantes lógicas proposicionais. Essa é uma situa-
ção indesejável, pois a Regra de Peirce não é considerada aceitável de um ponto
de vista construtivo. Por outro lado, verificamos que o procedimento justificatório
baseado nas regras de eliminação atesta a invalidade dessa mesma regra. Tece-
mos alguns comentários a respeito das consequências desse cenário para o projeto
filosófico de Dummett e para as semânticas construtivas em geral.

Palavras-chave intuicionismo lógico, teoria das demonstrações, teoria do signi-
ficado, validade lógica



Abstract

Oliveira, Hermógenes Hebert Pereira. Investigations on Proof-Theoretic Se-
mantics. Goiânia, 2014. 71 pages. Master’s Dissertation. Faculdade de Filoso-
fia, Universidade Federal de Goiás.

Proof-theoretic Semantics provides a new approach to the semantics of logical
constants. It has compelling philosophical motivations which are rooted deeply
in the philosophy of language and the philosophy of mathematics. We investigate
this new approach of logical semantics and its perspective on logical validity in the
light of its own philosophical aspirations, especially as represented by the work
of Dummett (1991). Among our findings, we single out the validity of Peirce’s
rule with respect to a justification procedure based on the introduction rules for
the propositional logical constants. This is an undesirable outcome since Peirce’s
rule is not considered to be constructively acceptable. On the other hand, we also
establish the invalidity of the same inference rule with respect to a justification
procedure based on the elimination rules for the propositional logical constants.
We comment on the implications of this scenario to Dummett’s philosophical pro-
gramme and to proof-theoretic semantics in general.

Keywords logical intuitionism, proof theory, meaning theory, logical validity



Intuitionism is a scandal to those who think that philosophy is
of no importance, or that it cannot affect anything outside itself, or
at least that there are some things which are sacrosanct and beyond
the reach of philosophy to meddle with, and that among them are the
accepted practices of mathematicians.

Elements of Intuitionism
Michael Dummett
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Introduction

Validity is an important concept in logical investigations. If we understand
logic as the study of reasoning and argumentation, for instance, then there is no
doubt that validity is a necessary condition of correct reasoning and cogent argu-
mentation. As a result, throughout the history of logic, the notion of validity has
always played a central role.

Validity is a semantic concept. This means that, to show validity of an argu-
ment or class of arguments, we must take into account the meanings of the logical
expressions involved. It is by appeal to the meanings of the logical expressions
that we can argue for the correctness of an inference from premisses to conclu-
sion in a valid argument. Therefore, the general model used to explain meaning,
i. e., a meaning theory, has a fundamental impact on the corresponding concept of
validity.

Currently, the prevalent meaning theory is denotational meaning theory: a
theory which explains meaning on the basis of reference or denotation. As a result,
most students of logic are acquainted with the concepts of interpretation , valua-
tion , satisfaction , truth value and others notions associated with model-theoretic
semantics, i. e., a particular kind of denotational semantics that borrows much of
its technical notions from model theory, a branch of mathematics.

The development of model-theoretic semantics represented a notable change
of attitude in logical investigations. This may be hard to see because many logic
textbooks, following a common trend in the field, presents model-theoretic se-
mantics as a natural extension of the early developments of modern symbolic
logic. However, there was indeed a drastic change of approach to the explanation
of logical validity. The distinction between syntax and semantics, for instance,
was absent in the early days of modern symbolic logic. Thus, although Frege
and Russell made heavy use of symbolic notation, the symbols on their symbolic
languages were never intended to be dissociated from their meanings: their for-
mal languages were presented as a notation for expressing logical notions and
relations. Looking at their work, we can see how they took great care, when

11



introducing logical notions and relations, to explain their meaning by means of
examples and by describing their general behavior.

It was David Hilbert who took the first important steps towards the separation
of syntax from semantics when he proposed, for the sake of pursuing his consis-
tency proof, that we view the symbolic systems of Russell and Frege as syntactical
systems. In this way, symbolic logic started to change from logical investigations
made more precise with the use of symbols to investigations about the symbolic
systems themselves. A radical and interesting example of this kind of formalism
can be found on Carnap (1964, p. 1):

The prevalent opinion is that syntax and logic, in spite of some
points of contact between them, are fundamentally theories of
a very different type. [. . . ] But the development of logic during
the past ten years has shown clearly that it can only be studied
with any degree of accuracy when it is based, not on judgments
(thoughts, or the content of thoughts) but rather on linguistic ex-
pressions, of which sentences are the most important, because
only for them is it possible to lay down sharply defined rules.

In The Logical Syntax of Language, Carnap attempted to answer traditional
logical problems by developing his theory of pure logical syntax. Later, Tarski
(1956) introduced the notion of model1 in order to overcome what he saw as short-
comings of the “syntactic approach to logical consequence”. After Tarski’s work,
model-theoretic semantics sided with the (syntactic) proof theory of the Hilbert
school and became an indispensable part in modern logical theories. Logic be-
came twofold: syntax and semantics.

With model theory taking care of the semantics, the common conception is
that the syntax ought to be understood as pure combination of symbols. The fa-
miliar recursive definition of the set of well-formed formulas, for example, is a
well-known part of the syntax. But in modern logical theories, the syntax does
not concern itself merely with the construction (or specification) of formal lan-
guages. The formal proofs of a deductive system, especially Hilbert-style de-
ductive systems, are understood as transformations and operations on strings of
symbols completely devoid of meaning and thus are also a part of syntax. How-
ever, just as the grammar of the formal language is based on the semantic role
of its syntactic units2, the formulation of the rules for carrying out formal proofs
always has also the meaning in sight.

1It is important to notice that the notion of model as originally used by Tarski (1956) differs
substantially from the notion of model currently used in model theory. There is no doubt, however,
that Tarski’s work was the most important inspiration.

2For instance, in a formal grammar, the symbols of the formal language are classified into
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Notwithstanding, model-theoretic logical theories generally assume a formal-
ist stance towards syntax and proceed as if it was independent from the semantics,
i. e., from meaning. As a result, one can feel an implicit dichotomy between syn-
tax and semantics which gives rise to the belief that syntax is somehow opposed
to meaning. But is formalism the only approach to syntax? Is it correct that rules
and rule-following are essentially opposed to meaning?

As remarked above, some important pioneers of modern symbolic logic did
not take a formalist stance towards their symbolic systems. Moreover, judging
from some pieces of his work, even Hilbert (1928, p. 79), by some considered to
be the father of formalism, considered formal proofs as an expression, or repre-
sentation, of meaningful thought:

The formula game that Brouwer so deprecates has, besides its
mathematical value, an important general philosophical signif-
icance. For this formula game is carried out according to cer-
tain definite rules, in which the technique of our thinking is ex-
pressed.

In other words, Hilbert is saying that the syntactic rules used to construct
formal proofs are not mere symbolic manipulation but also an expression of de-
ductive relations.

Besides its contribution to the adoption of a formalist approach to syntax,
model-theoretic semantics also changed significantly the way we establish valid-
ity. In ancient Greece, Aristotle (Prior Analytics, 29b) argued intuitively for the
validity of some deductive relations and later established the validity of a group
of other deductive forms by reducing them to the first ones. In contrast, model-
theoretic semantics explains validity in terms of quantification over models and,
as a result, all valid forms are, conceptually, on the same level3.

In other words, the pervasiveness of model-theoretic semantics and its syn-
tax/semantics dichotomy has shifted the attention of the logician away from infer-
ences and deductions and has placed it instead into valuations and models. This
has gone to such an extent that one needs to write a handful of paragraphs just
to explain how inferences, as steps in a proof or argument, can ascribe meaning

classes that indicate their general semantic role — individual constants are used to denote objects
of the domain, monadic predicate letters denote subsets of the domain whose elements are objects
that have a certain property and so on.

3For example, from the viewpoint of the tarskian notion of logical consequence, there is no
conceptual difference between the validity of modus ponens and that of an argument form with an
infinite class K of premisses.
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to logical expressions and how proof theory, as the study of such deductive prac-
tice, can be a base for semantics. As Schroeder-Heister (2006, p. 526) adequately
observes:

Proof-theoretic semantics [. . . ] uses ideas from proof theory as
a mathematical discipline, similar to the way truth-condition se-
mantics relies on model theory. However, just this is the basis
of a fundamental misunderstanding of proof-theoretic seman-
tics. To a great extent, the development of mathematical proof
theory has been dominated by the formalist reading of Hilbert’s
program as dealing with formal proofs exclusively, in contradis-
tinction to model theory as concerned with the (denotational)
meaning of expressions. This dichotomy has entered many text-
books of logic in which “semantics” means model-theoretic se-
mantics and “proof theory” denotes the proof theory of formal
systems. The result is that “proof-theoretic semantics” sounds
like a contradiction in terms even today.

The main theme of this dissertation is proof-theoretic semantics. It is based on
the idea that meaning should be explained not in terms of denotation but in terms
of use. To explain meaning in terms of use in the context of a semantics for logic
is to adopt the view that certain deductive rules implicit in our linguistic practice
determine the meaning of the logical constants. Thus, proof-theoretic semantics is
to a meaning theory based on use what model-theoretic semantics is to a meaning
theory based on denotation.

We can better illustrate the proof-theoretic approach to meaning by means of
an example with a single logical constant: implication. Since we are concerned
with a semantics for logic, the relevant practice is deductive practice; the relevant
use is deductive use. There are two aspects to the use of implications in deduc-
tions: they can appear as conclusion or as premisses of an inference step.

However, there are many ways in which implications can appear as either pre-
miss or conclusion of inferences, but not all of them are essential to the meaning
of implication. We observe that there are essential, canonical uses of implication
either as premiss or as conclusion of an inference. When used as the conclusion,
we can express the canonical uses by especifying the necessary and sufficient con-
ditions for concluding a sentence with implication as the main logical connective.

We can read the introduction rule of natural deduction below as expressing
exactly these necessary and sufficient conditions. Thus, a necessary and sufficient
condition for making an inference whose conclusion is A⊃ B is that we have
a derivation of B from the hypothesis A. Of course, there are other situations
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in which A⊃B may appear as conclusion of an inference. But, as we shall be
convinced later (Section 1.6), these other uses are inessential and can be explained
by reference to the canonical use.

[A]....
B

A⊃B (1)

Likewise, the elimination rule for implication below can be seem as the canon-
ical way to infer consequences from sentences with implication as their main log-
ical connective. Here, the elimination rule expresses what consequences must be
accepted on the strength of A⊃B and the auxilliary premiss A. Again, there are
other consequences that can be extracted from A⊃B besides those of the corre-
sponding elimination rule. And, again, they are inessential.

A A⊃B
B (2)

By carrying the considerations sketched above to the other logical constants, we
can show that any valid deductions can be accounted for by reference only to
canonical inferences. In other words, any deductive relatioship between sentences
can be established using the introduction and eliminations rules of the logical
constants involved.

Furthermore, we can notice an important relationship between both aspects of
the use of implication: what was required for the introduction of A⊃B, namely, a
derivarion of B (based on hypothesis A) can be restored by applying the elimina-
tion rule. To put it in another way, what is obtained by elimination of A⊃B was
already at hand if we assume A⊃B to have been derived by the introduction rule.

The relationship between the deductive behavior of introduction and elimi-
nation rules for a logical constant can be studied in order to extract important
semantic properties. A general study of this kind constitutes the core of the proof-
theoretic approach to semantics4. Our little example using implication was de-
signed only to illustrate, somewhat roughly, the proof-theoretic approach to the
semantics of logic. A more substantial discussion requires a more detailed treat-
ment of natural deduction systems and some of their properties (see Chapter 1).

4Some decades ago, Prawitz (1973) outlined a research program along the same lines which
he called “general proof theory” in constrast with the “reductive proof theory” of the Hilbert
school. Later, Schroeder-Heister (see 2006) proposed the term “proof-theoretic semantics” which
is widely adopted today.
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One of the challenges facing proof-theoretic semantics is to determine to what
extent we can achieve a satisfactory logical theory, including a well-defined con-
ception of validity, by reflection on the deductive use of the logical constants.
However, the interest placed on proof-theoretic semantics does not come from
logic alone, but also from mathematics. On the literature, proof-theoretic seman-
tics has been associated with intuitionism and mathematical constructivism gener-
ally. In particular, Dummett (1975b) believes that we can settle the metaphysical
dispute in the philosophy of mathematics by advancing arguments in favour of a
meaning theory based on use, which in turn will lead solely to a justification of
intuitionistic reasonings and, thereby, a vindication of the intuitionistic philoso-
phy of mathematics (see Chapter 2). Thus, he maintains there is a path from logic
to metaphysics such that, by resolving the dispute between classic and intuitin-
ist in the philosophy of logic, we also resolve the dispute in the philosophy of
mathematics.

With respect to the resolution strategy proposed by Dummett, we can doubt
whether the conflict in the philosophy of mathematics does not involve strictly
mathematical (non-logical) considerations but merely revolves around what is
the correct underlying logic5. However, as we shall see ( Section 2.2.2), from
a philosophical point of view, a more serious problem afflicts some current proof-
theoretic proposals: the restriction of semantic analysis to the concept of proof
which, altough an important part, is not sufficient to account for deductive prac-
tice (in mathematics and other areas of discourse).

It is quite evident from our practice that we can make deductions from ex-
plicit (open) assumptions. Yet, many constructive accounts of logic adopt what
Schroeder-Heister (2013, Section 2.2.2) calls “the substitutional view of open
proofs”. According to this view, proofs (deductions) from opens assumptions
must be explained away in terms of proofs tout court.

As we shall discuss in Chapter 2, the substitutional view of open proofs is
based on some general philosophical tenets which, altough persistent in much
of the discussion around proof-theoretic semantics, can be challenged from an
autentic proof-theoretic perspective. In particular, we single out the following two
ideas as important obstacles to the acceptance of deduction from assumptions as
a primitive concept:

assertability The idea that assertions are the central linguistic concept of a mean-

5Philosophical views associated with mathematical constructivism can be very diverse and rich.
They sometimes involve positions with regard to some strictly mathematical concepts. Troelstra
and van Dalen (Section 1.4, 1988) offers a concise survey of the most important philosophical
positions associated with constructivism in 20th century mathematics.
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ing theory based on use and, consequently, the view that an inference is a
passage from assertions to assertions. This is often expressed in the slogan
that a meaning theory based on use substitutes, in the general framework of
a denotational meaning theory, the concept of truth conditions for asserta-
bility conditions .

BHK semantics The idea that the BHK interpretation of the logical constants
should be taken as a starting point for a complete and coherent semantic
explanation of the meaning of the logical constants and, in particular, the
view that the BHK interpretation corresponds somehow to the introduction
rules of natural deduction.

Once these ideas are abandoned, there is no reason to cling onto a substitu-
tional view of open proofs. Then, much as we have been doing, we can, consis-
tently with our proof-theoretic semantic principles, understand the meaning of the
logical constants as they are expressed in our practice of deductive argumentation.
In particular, if one of the aspects of the meaning of a logical constant is indeed ex-
pressed by its use in open assumptions so that we can extract consequences from
them, then there seems to be no overwhelming reason why we should reduce this
aspect to a notion of categorical proof (proof from no assumptions).

We believe that our diffidence towards the substitutional view of open proofs
would be justified in Chapter 3, when we examine the proof-theoretic seman-
tics proposed by Dummett (1991, Chapter 11–13). There we provide Theorem 1
which states the validity of Peirce’s rule with respect to Dummett’s justification
procedure based on introduction rules.
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Chapter 1

Natural Deduction

In what follows, we shall strive to bring out semantic content from natural
deduction1. In line with this motivation, the following discussion does not con-
tain an exaustive or self-contained treatment. Complete, excellent and rigourous
technical monographs on natural deduction are available elsewhere and very little
could be achievied by reviewing them here. Altough we will, indeed, review the
introduction and elimination rules for the usual logical constants, our focus will
be on explanation rather than specification and presentation. However, before we
proceed, it is necessary to quickly fix some notation to avoid confusion.

We use the symbols “⊃”, “∧”, “∨”, “¬”, “∀” and “∃” to mean implication ,
conjunction , disjunction and negation , universal quantification and existential
quantification respectively. Uppercase latin letters “A”,“B”, “C” and so on stand
for arbritary sentences (open or closed). We use lowercase greek letters, like “ϕ”
and “ψ”, specially to denote atomic or prime sentences. Uppercase greek letters
“Γ” and “∆” stand for sets of sentences which are normaly used to represent the
premisses on which depends some occurence of a sentence in a derivation. The
derivations themselves are depicted as trees of sentences where we indicate dis-
charche of hypotheses by enclosing them in square brackets as in “[A]”. The up-
percase greek letter “Π” is reserved for trees or subtrees and the uppercase greek
letter “Σ” is used to denote sequences of trees (including an empty one) which can
be part of a complete tree. Moreover, some uppercase latin letters (in sans serif
typeface) are reserved to denote sets of rules in natural deduction style as in “I”
for introduction rules and “E” for elimination rules. Among the lowercase latin
letters, we use “a”, “b” and “c” as individual parameters; individual variables are
denoted by “x” and “y”; and, finally, we reserve “t” for terms. When necessary,

1The idea is not new and can be traced back to the “gentzensemantik” of Kutschera (1968).
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we employ natural number subscripts.

A natural deduction system consists of a set of rules designed to capture the
concept of logical deduction. The most interesting feature of natural deduction
compared to other deductive systems is the classification of its inference rules be-
tween introduction rules and elimination rules (at least one of each kind for each
one of the logical constants). Natural deduction rules for a certain logical con-
stant always figure a formula with that constant as the main operator and also its
subformulas. Moreover, as a general pattern, the subformulas occur as premisses
in the introduction rules whereas with the elimination rules it is usually the other
way around2.

This general pattern naturally gives rise to the interpretation that the intro-
duction rule for a logical constant γ, denoted by “γI”, expresses the necessary
and sufficient conditions under which we can infer a sentence containing γ as the
main logical operator. Analogously, the elimination rule for γ, denoted by “γE”,
expresses what are the consequences that can be extracted from a sentence con-
taining γ as the main logical operator, together with other, minor, premisses when
necessary. Below, we show the introduction and elimination rules for the main
logical constants. We also take the opportunity to make some comments about
their meaning.

1.1 Implication

Also called “conditional”, this connective is perhaps the most complicated
and controversial of all the logical constants. Its most common English reading is
represented by the “if . . . then” idiom. In general, when we use this expression, we
claim a certain relation of entailment between the antecedent and the consequent:
one follow from the other by causality, deduction or other kind of chain of plau-
sible reasons. However, the meaning attached to implication by the introduction
rule is somewhat weaker than the meaning usually associated with the “if . . . then”
idiom.

2In fact, the situation with the elimination rules is a little more complicated. The formula
containing the logical constant as main operator occur as a major premiss with subformulas some-
times also figuring as minor premisses. A subformula may (as in inference rules) or may not (as
in deduction rules) occur as conclusion of the rule.
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[A]....
B

A⊃B ⊃I A A⊃B
B ⊃E

As a matter of fact, the introduction rule above does not require that a premiss of
the form A be actually discharged. Thus, the rule permits the inference of A⊃B
on conditions under which A is irrelevant. On the other hand, the elimination rule
for implication does require a premiss of the form A for its application. From the
point of view of the introduction rule, the stronger requirement for elimination is
natural since, even assuming the major premiss to have been obtained by ⊃I, we
cannot tell in advance if a premiss was discharged by its application. However,
from the point of view of the elimination rule, a stronger meaning can be assigned
to implication since A will always be available but would go unused in a deduction
of B not depending on A.

The unbalance between the introduction and elimination rules for implication
and the disagreement between those rules and the expressions said to be its equiv-
alent in natural languages has led some authors, notably Tennant (1987, chap-
ter 17), to favor a relevant reading of implication.

1.2 Conjunction

Especially in contrast with implication, the rules for conjunction are perhaps
the most straightforward and uncontroversial. This is no surprise, since the mean-
ing that the introduction and elimination rules give to conjunction is very narrow.

A B
A∧B ∧I A∧B

A ∧E A∧B
B ∧E

A simple, although not so exact, intuitive explanation of the rules is to say that a
conjunction allows one to convey, in a single sentence of the form A∧B, the exact
same information conveyed by both sentences, A and B. This narrow meaning
is seldom, if ever, intended in ordinary speech where expressions like “and” and
“but” are more often used to convey more information than mere logical conjunc-
tion: temporal sequence, surprise, disbelief and so on.

20



1.3 Disjunction

In English, disjunction is usually associated with the meaning of the expres-
sion “or”. In ordinary speech, we sometimes use “or” to express an exclusive
choice or option as in “you either pay your rent or risk having to sleep under the
bridge”. Thus, it is common to use “or” in contexts involving agents and actions.
Yet, disjunction also appears in more declarative contexts, especially in situations
when we do not have enough information to determine which one of the disjuncts
holds. Even in such state of information, we can still extract consequences from
the disjunction by showing them to be derivable from each one of the disjuncts,
as is expressed by the elimination rule.

A
A∨B ∨I B

A∨B ∨I A∨B

[A]....
C

[B]....
C

C ∨E

On the other hand, at least from an epistemological point of view, the introduction
rule for disjunction is somewhat pointless. As remarked above, the conclusion
A∨B does not say which one of the disjuncts holds. So, epistemologically, there
seems to be more information on the premiss of the rule than on its conclusion.
Arguably, this can also be said of ∧E. But, given that ∧E is an elimination rule and
its purpose is to extract consequences from its premiss, it is expected that those
consequences may have less information.

1.4 Negation

In Prawitz (1965) and in most of the modern texts in natural deduction, nega-
tion is a defined symbol. It is defined in terms of a propositional constant ⊥,
called “absurdity” or “falsum”, and implication: ¬A ≡ A⊃⊥. A noteworthy ex-
ception is Gentzen (1935, p. 186), which gives introduction and elimination rules
for negation. We follow the current practice and give rules for the ⊥ constant,
letting negation stand defined as above.

⊥
A
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Negation is also a very interesting and controversial logical operator. The classical
understanding of negation goes back to Aristotle (On Interpretation, VI) which
believed that every sentence had its corresponding contradictory negation which
could, in principle, be affirmed. As a matter of fact, from the point of view of
a denotational theory of meaning, this Aristotelian conception of negation seems
very natural.

However, if we choose to remain silent about Aristotle’s claim and try to come
up with some general rules about negation, one of the principles that comes to
mind is the so called law of non-contradiction. The principle of non-contradiction
is often understood as a prohibition (among rational human beings) of mantaining
both A and ¬A at the same time. Using the rule for⊥ and the definition of negation
above, we can get a sense of the consequences of violating the principle of non-
contradiction: any sentence can be obtained, and our deductive practice looses all
its meaning.

Whether our rule for ⊥ is the best way to account for our use of negation,
even in mathematical discourse, is indeed open to question. Nevertheless, there is
a far more troublesome issue with our account of negation: ⊥ does not follow the
pattern of introduction and elimination rules laid down by the other constants. In
order to remedy the situation, Dummett (1991, p. 295) has proposed the following
introduction rule for ⊥, where Ai ranges through all the atomic sentences of the
language:

A1 A2 A3 . . .
⊥ ⊥I

When the natural deduction rule for ⊥ is considered as an elimination rule,
written “⊥E”, Dummett believes that the rule ⊥I above is the more adequate har-
monious introduction rule. Indeed, we can see that, assuming A to be atomic
without loss of generality, an application of ⊥E would allow us to obtain any
atomic sentence A. Therefore, an introduction rule in harmony with ⊥E should
require no less than all atomic sentences Ai as premisses (see Section 1.6).

Now, someone might wonder why the rule ⊥/A is sufficient for a complete
natural deduction system while the other constants require introduction and elim-
ination rules. As Dummett (1991, p. 292) himself observes, on the face of the
catastrophic consequences of actually accepting an argument for ⊥, we can ex-
pect to use it only in subordinate arguments. For instance, we can use it to show
the unacceptability of some claim A by means of an argument from A to ⊥ and,
subsequently, conclude A⊃⊥ and discharge the unacceptable hypotheses A. At
any rate, the meaning of negation, as expressed in natural deduction systems with
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our rule for ⊥, does not seems to amount to much more than these kinds of sub-
ordinate arguments.

1.5 Quantification

Since Aristotle and his syllogistic theory of categorical sentences, quantifica-
tion is intrinsically connected with predication. It deals with the logical relation-
ship between expression like “some”, “every” and “all” when applied to predicates
in order to form quantified sentences. Also, it relates quantified sentences with
their corresponding singular sentences. In modern logic, the reasonings involving
quantified sentences are analysed with the help of two logical constants: the uni-
versal and the existential quantifiers. The rules governing the use of these logical
constants in a natural deduction system are distinguished by the restrictions on
the occurence of individual parameters placed on their applications. In the figures
below, we write “At1

t2” to represent the operation of replacing every occurence of
t1 by t2 in A (if there are any).

A
∀xAa

x
∀I ∀xA

Ax
t
∀E

Ax
t
∃xA ∃I

∃xA

[Ax
a]....

B
B ∃E

The meanings of ∃I and ∀E are very straightforward. The first one licenses the
inference of the existentially quantified sentence on the ground that the predicate
(or open sentence) A applies to some specific term t. The second one, licenses the
inference of a particular instance from a universally quantified sentence. On the
other hand, ∀I and ∃E are more difficult to understand because of the aforemen-
tioned restrictions on individual parameters.

In fact, the restrictions are meant to guarantee that we have a general argument
concerning an unspecified individual a such that any substitution of a term or
individual constant for a, thus obtaining an instance of the general argument, will
not tamper with its correctness. Otherwise, if we assume a to occur in one of the
premisses on which A depends, the application of ∀I does not produce a general
argument since the process of instantiation just described will inevitably change
some of the premisses. Therefore, in applications of ∀I, a must not occur in any
of the premisses on which A depends.

Futhermore, a similar general argument is required for ∃E because, although
we know from ∃xA that we can correctly claim A of some individuals (assuming
x to occur in A), we do not know anything specific about them. Therefore, in
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applications of ∃E, a must not occur in any premisses other than the hypotheses
discharged, so that the inference to conclusion B does not assume any specific
feature of the individual that ∃xA claims to exist.

1.6 Harmony

In the previous section, we saw that we can read the introduction rules for
a constant γ as an expression of the necessary and sufficient conditions for de-
ducing its conclusion A γ B (assuming the paradigmatic case where γ is a binary
connective). Since we are dealing with logical expressions, there is a very plau-
sible requirement that we can place on the corresponding elimination rules: the
consequences extracted from its major premiss A γ B can never extrapolate what
was necessary for the conclusion of A γ B by means of the introduction rules. A
similar requirement can be placed on the introduction rules from the point of view
of the elimination rules: given the context, whatever can be deduced from the
conclusion by means of the elimination rule could already be deduced from the
premisses. When both these requirements are fullfiled, we say that the introduc-
tion and elimination rules for a logical constant are in harmony with each other.

The concept of harmony between logical rules goes back to a much quoted
passage from Gentzen (1935, p. 189) to the effect that “the introduction rules
are definitions and the eliminations are only their consequences thereof”. Adopt-
ing terminology from Lorenzen (1969, p. 30), Prawitz (1965) attempted to make
Gentzen’s remarks more precise by formulating an inversion principle. Also, har-
mony is a fundamental part of normalization procedures for natural deduction sys-
tems. These procedures show the existence of derivations, called normal deriva-
tions, with a special structure and important properties. In addition, the normal-
ization theorem establishes that if a sentence A is at all derivable from premisses
Γ, then there is a normal derivation of A from Γ.

Normalization procedures are based on reductions which allow for the elimi-
nation of roundabouts in a natural deduction derivation. In other words, when we
have an introduction rule whose conclusion is the major premiss of an elimination
rule, there is a reduction which gives us a derivation of the same conclusion from
the same premisses without going through those steps. An example:
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Σ1
A

[A]
Σ2
B

A⊃B
B
Σ3

Σ1
A
Σ2
B
Σ3

On the left, there is a derivation containing a roundabout: an implication is
introduced just to be, immediately after, eliminated. Since ⊃E is in harmony
with ⊃I, its application just restored what was already required as premiss for the
corresponding introduction rule. As a consequence, both steps in the derivation
can be avoided by rearranging the derivation as shown on the right.

Besides the possibility of being reduced in the manner described above, there
is another interesting property we can, in general, expect from harmonious rules:
under certain conditions, their addition to a deductive system yields a conservative
extension. For, suppose the conditions for the application of the introduction rule
for the newly added connective were fullfiled. Then, if harmony obtains, the
elimination rule would not allow the derivation of new consequences besides those
that were already derivable in the original system.

The fact that the addition of some rules to a deductive system, or, for that
matter, to any comprehensive and coherent linguistic practice, yields a conserva-
tive extension makes a strong case for the logicality of those rules. Otherwise, if
the addition of rules for the use of a logical constant γ change the original system
in such a way that a sentence A, not containing γ, now becomes derivable, then
we have strong evidence that γ incorporates some extralogical content. This point
can be more easily seen when we consider an original system composed solely of
descriptive expressions. In such a case, the rules for γ would license the derivation
of a descriptive (since it does not contain γ) sentence which was not previously
derivable.

Based on our discussion so far, we can gather that, from the point of view of a
theory of meaning based on use, harmony is, all things considered, an altogether
desirable property for logical constants. Futhermore, we also note that, all of
the consequences we have been extracting from the harmonious rules of natural
deduction were revealed by reflection on the meaning of the logical constants as
determined by their deductive use: they are, thus, semantical consequences.

Nevertheless, against the whole idea of a semantics based on proof theory,
someone might argue that the purpose of a logical semantics is not only to as-
certain validity but also to provide a criterion for invalidity, so that the concept
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of logical consequence is completely determined. But, if we restrict ourselves to
deductions, he continues, and cannot appeal to models and interpretations with
which to provide counterexamples, how can we show arguments to be invalid?

Surely, pointing out counterexamples is an important method of showing inva-
lidity. Yet, we have to keep in mind that the method afforded by counterexamples
is often used to call atention to argument form, as in Bolzano’s theory of logical
consequence. However, in this case, an independent criterion for invalidity is still
needed. In other words, by a conterexample to some argument, we mean another,
acceptably invalid, argument of the same form (obtained, in Bolzano’s theory, by
substitution of non-logical expressions). Admittedly, from a denotational point
of view, counterexamples are not arguments but are actually models. Then, these
models —which provide for the notion of truth used to explain the classical mean-
ing of logical constants— have to be taken as giving an independent criterion.
Whether models of reality can really be accepted as given independently of our
deductive practice is, however, a matter of much debate. Prawitz (1974, p. 67)
and Dummett (1975a), for instance, discuss this problem and how it affects the
capacity of model-theretic semantics to adequately explain and elucidate logical
validity. Yet, the question of how should proof-theoretic semantics handle inva-
lidity remains unanswered.

From a classical perspective, with its formalist view of deduction, the prospects
with regard to this question does not seem very promissing. Nonetheless, the
methods employed in proof-theoretic semantics are not limited to a formalist study
of proofs. Prawitz (1973, p. 225, emphasis on the original) understood very well
the wide range theoretical implications implicit in Gentzen’s work when he pro-
posed his general study of proofs:

In general proof theory, we are — in contrast — interested in
understanding the very proofs themselves, i.e., in understanding
not only what deductive connections hold but also how they are
established, and we do not impose any special restrictions on
the means that may be used in the study of these phenomena.

Manifestly, if we continue our task of extracting semantic content from an
analysis of the deductive behaviour of the logical constants, we shall be led to a
very plausible approach to invalidity.

We recall that we can specify all legitimate ways to deduce a conclusion A γ B
with respect to γI by appeal to normalization. Moreover, by appeal to the notion
of harmony, we can also determine the correct use of A γ B as major premiss of
an elimination rule and consequently fix completely the meaning of γ as a logical
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constant. Similar remarks can be stated with respect to γE. Obviously, we can
extrapolate these methods from a single logical constant γ to a set I(E) of intro-
duction (elimination) rules. As a result, it is possible to display exactly what are
the legitimate ways to obtain a given conclusion with respect to a set I(E) for the
logical constants. Finally, invalidity of an argument can be established by showing
that the criteria for legitimately infering the conclusion were not met.

We shall reach a better understanding of the process of validation (or invali-
dation) in Section 3.2 and Section 3.3 when we investigate the verificationist and
pragmatist justification procedures, respectively. As we shall see in those sec-
tions, for an invalid rule, the justification procedure produces an additional pre-
miss which does not figure in the rule but is, nevertheless, necessary to correctly
infer the conclusion.

In the following chapter, we remark upon the motivation behind proof-theoretic
semantics to provide an adequate semantics for intuitionistic logic. On the other
hand, besides proof-theoretic semantics, there are other semantics for intuitionis-
tic logic. Kripke semantics is, perhaps, the most well-known. However, there are
some objections that can be raised against Kripke semantics from a constructive
point of view. For instance, it is possible to show validity in Kripke semantics
without actually producing a proof (or “witness” as some authors use in this con-
text). With respect to invalidity, Kripke semantics can be motivated via Brouwer’s
method of weak counterexamples. As Kripke (1965, p. 104) himself remarks:

A careful reader of the present section on the interpretation
of our models will find it plausible that, conversely, a good
deal of the interpretation, at least for propositional calculus,
that has just been carried out in FC, could be carried out us-
ing Brouwer’s method of ips depending on the solving of prob-
lems.3

In a Kripke model4 a counterexample is represented by a node (state of infor-
mation) in a Kripke tree such that we accepted the premisses but are, nevertheless,
not forced to accept the conclusion. If the conclusion is not refutable, supposedly
there are other nodes farther up in the tree (in which we accepted other premisses)
such that we are forced to accept the conclusion. Maybe, the additional premisses
produced by the proof-theoretic justification procedures can be shown, in a certain
sense, to correspond to weak counterexamples and Kripke countermodels.

3In “Brouwer’s method of ips”, Kripke is refering to Brouwer’s infinitely proceeding se-
quences. For a detailed discussion, see Heyting (1971, Section 8.1).

4For a complete and clear exposition of Kripke models for intuitionistic logic, see Troelstra
and van Dalen (Chapter 2.5, 1988).
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Chapter 2

Philosophical Motivations

There are at least two philosophical motivations connected with the develop-
ment of proof-theoretic semantics:

• To advance an argument for the adoption of intuitionistic over classical logic

• To develop a semantics for logic based on the “meaning as use” approach
to the theory of meaning

The first motivation stems from constructivist views on the philosophy of
mathematics and seeks to gain support for constructive mathematics by means
of replacing classical logic with constructive logic. A very compelling exposition
of such motivation was made by Dummett (1975b, p. 5).

The second motivation stems from an anti-realist position in the philosophy
of language and seeks to develop an autentic semantics, for logic and other areas
of discourse, which is faithful to the view that meaning must be based on use.

Dummett (1991) has also expressed the second motivation. In fact, a note-
worthy characteristic of his work is the amalgamation of both motivations into a
coherent philosophical programme. According to this programme, considerations
from the philosophy of language can be used to settle the metaphysical dispute
between classical and constructive philosophies of mathematics.

In outline, Dummett’s programme begins at the level of the philosophy of
language by advancing arguments against denotational theories of meaning and
truth-conditional semantics. Then, an alternative, more adequate, conception of
meaning based on use is proposed. The programme culminates in the development
of a complete semantics for logic. In addition, there is an expectation that the
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semantics will avail intuitionistic logic over classical logic and, finally, through
logic, will settle the controversy in the philosophy of mathematics.

However, as we can see, there is nothing in the formulation of the programme
itself that rules out the possibility that a theory of meaning based on use will
not, after all, favor intuitionistic logic over classical logic. The reasons to expect
this outcome rests mainly on Dummett’s meaning-theoretical interpretation of the
metaphysical dispute between classical and intuitionist mathematics.

Dummett maintains that the metaphysical dispute between classical and in-
tuitionist mathematics is part of a wide range of metaphysical disputes between
two general opposing camps: realism and anti-realism. In his interpretation of
this class of metaphysical disputes, the difference between the camps boils down
to the question of what is the correct theory of meaning for the relevant class of
sentences and, in particular, whether the principle of bivalence applies.

The connection between the theory of meaning and metaphysics has often
been criticized on general grounds, for instance, by Pagin (1998) and Devitt (1983).
In contrast, our concern shall be to investigate the programme on its own terms
and see whether the development of proof-theoretic semantics is indeed capable
of settling the metaphysical dispute by vindicating only intuitionistic logic.

There is another important issue concerning Dummett’s programme that can
sensibly be addressed by actually carrying it out: to show that a satisfactory and
coherent meaning theory based on use is possible at all. As Dummett (1991,
chapter 10) himself observes, not only the mere possibility of such a theory of
meaning, but also its capacity to effectively criticize and maybe reform accepted
linguistic usage faces important threats from semantic holism.

Given the broad philosophical connections of Dummett’s programme, we
shall examine some relevant conceptual issues in the next sections before we ad-
dress the details of a functional proof-theoretic semantics for logic in Chapter 3.

With the objective of getting a better understanding of its constructive her-
itage, we need to examine some historical roots since much of the conceptual
framework of proof-theoretic semantics was a product of the late 19th century
(and early 20th century) debate on the foundations of mathematics. Among the
many issues debated, we single out two important historical roots. First, there is
Brouwer’s intuitionistic philosophy of mathematics. And second, there is Gentzen’s
formalisms and his conceptual analysis of deductive reasoning.

Gentzen’s natural deduction was already treated to some extent on Chapter 1.
There we saw that Prawitz (1965) expanded on Gentzen’s work on natural de-
duction and formulated what he called an inversion principle. This principle ex-
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pressed an harmony between the inferential behaviour of the introduction and
elimination rules for a given logical constant. We also saw the importance of
harmony and how it became a cornerstone for proof-theoretic semantics.

In the next section, we expand on intuitionism. Its main contribution was
the critique of classical mathematical reasoning, especially of what is known as
the principle of excluded middle. This led to the development of the canons of
reasoning expressed in intuitionistic logic.

2.1 Logic and mathematics

The late 19th century witnessed a vigorous debate around the foundations of
mathematics. As the logicism of Frege, Russell and Whitehead fell prey to para-
doxes, two distinct philosophies came out as alternatives to logicism: Hilbert’s
formalism and Brouwer’s intuitionism.

On the one hand, Hilbert’s foundational program aimed to show the consis-
tency of mathematics by means of “finitistic” methods. If carried out, Hilbert’s
consistency proof was believed to provide an indirect foundation for classical
mathematics when the more direct approach of the logicists have failed. On the
other hand, Brouwer’s philosophy rejected any need for foundations: he character-
ized mathematics as a free product of the mathematician’s mental constructions.
At that time, the intuitionist’s critique of classical mathematics resonated well in
the uneasy context of the paradoxes. Despite the fact that, on a practical level, the
formalist (in his metamathematics) as well as the intuitionist tried to restrict the
principles of reasoning used (if compared to the classical logicist), their philoso-
phies remained quite distinct. As Dummett (2000, p. 2) observes:

Intuitionism took the fact that classical mathematics appeared
to stand in need of justification, not as a challenge to construct
such a justification, direct or indirect, but as a sign that some-
thing was amiss with classical mathematics. From an intuition-
istic standpoint, mathematics, when correctly carried on, would
not need any justification from without, a buttress from the side
or a foundation from below: it would wear its own justification
on its face.

Brouwer’s view of mathematics as mentally constructed had drastic conse-
quences to the mathematical practice of his day. An obvious consequence was a
rejection of actual infinity, a concept that has become widely accepted, especially
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after Cantor’s work on set theory. In this respect, Brouwer was expressing mathe-
matical views which go back, at least, to Gauss (1977–1985) as quoted by Kleene
(1952, p. 48).

Apart from the foundational perspective towards mathematics, Brouwer (1908)
was also suspicious of logic. He understood clearly that, if the accepeted princi-
ples of logic were indeed universally applicable, his views on how mathematics
ought to be carried out could not stand unharmed. Thus, he believed that the most
elementary constructions of mathematics are not in need of any foundation, logi-
cal or otherwise. Rather, he maintained that the logical theories advanced by the
logiscists as a foundation for mathematics in fact pressuposed elementary mathe-
matical techniques. Therefore, when Brouwer talked about the principles of logic
as being “unreliable”, he was attacking the canons of reasoning associated with
the predominant classical logic.

2.1.1 The principle of excluded middle

Granted that our main concern is logic rather than mathematics, the relevance
of Brouwer’s philosophy of mathematics to our discussion is that his reflections
on the nature of mathematics led to the rejection of what appears to be a purely
logical principle. Indeed, he blamed the paradoxes on the careless use of this
logical principle, the principle of excluded middle, by mathematicians, especially
when reasoning about potentially infinite mathematical series. As Heyting (1971,
p. 1) put it:

It was Brouwer who first discovered an object which actually
requires a different form of logic, namely the mental mathe-
matical construction (BROUWER, 1908). The reason is that
in mathematics from the very beginning we deal with the infi-
nite, whereas ordinary logic is made for reasoning about finite
collections.

So, according to Brouwer, one of the main problems with classical mathemat-
ics is its uncritical acceptance of the principle of excluded middle when reasoning
about potentially infinite collections. However, if we think about it, the whole idea
seems a little bit strange: Why should the validity of a logical principle depend on
whether the universe of discourse is finite or infinite?1

1The character named CLASS in Heyting (1971) makes the point succinctly thus: “I never
understood why logic should be reliable everywhere else, but not in mathematics”.
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But, if we look closer, finiteness does not seem to play an essential role in
the intuitionistic critique. In fact, the reason given by Brouwer, and later by Heyt-
ing (1971, p. 1–3), for why the universal validity of the excluded middle should
be rejected involves the observation that this law embodies an unjustified meta-
physical principle: the principle that mathematical objects exist independently of
our knowledge of them, i. e., independently of being constructed. Thus, what the
intuitionist really claims is that we should not assume the classical metaphysics
of mathematical objects and, further, that only on the basis of this additional as-
sumption the law of excluded middle can be justified.

Indeed, if the reasoning above is sound and we insist that logical principles
should be universally applicable, we are forced to accept the conclusion that the
principle of excluded middle is not a purely logical principle. Therefore, it seems
reasonable to interpret the intuitionistic objection as a general objection and a
contribution not only to the debate in the philosophy of mathematics but also to
the philosophy of logic.

Futhermore, understood in its full generality, the contrast drawn by the in-
tuitionist between mathematics and other subject matters dealing with finite col-
lections also suggest that the contention lies rather in the assumption of general
solvability of mathematical problems. That is, whether we are talking about finite
collections of a concrete nature or about platonic mathematical objects, we can
assume that for every problem or question there is a definite answer, no matter if
we can find it or not.

In fact, Brouwer’s method of weak conterexamples rests on the idea that, from
a constructive perspective, classical reasoning would yield correct results only un-
der the assumption of general solvability of all mathematical problems. By point-
ing out examples of the application of the principle of excluded middle which
leads, under an intuitionistic interpretation, to the conclusion that we should pos-
sess a proof for a hitherto unproved conjecture, he attempted to show the invalidity
of some classical principles of reasoning. Brouwer (1908, p. 3) realized that these
principles could not be shown invalid by familiar classical counterexamples:

In infinite systems the principium tertii exclusi is as yet not
reliable. Still we shall never, by an unjustified application of
the principle, come up against a contradiction and thereby dis-
cover that our reasonings were badly founded. For then it would
be contradictory that an imbedding were performed, and at the
same time it would be contradictory that it were contradictory,
and this is prohibited by the principium contradictionis.

To better illustrate Brouwer’s method of weak conterexamples, we consider
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some particular mathematical conjecture. Thus, let A express Goldbach’s conjec-
ture. From an intuitionistic point of view, a mathematical statement expresses the
realization of a mental construction. Consequently, A∨¬A means that we either
have a proof or a refutation of Goldbach’s conjecture. Unfortunately, we can not
claim, at the moment, to have either one. Therefore, the principle of excluded
middle is not intuitionistically valid.

Certainly, the intuitionist has a strong case. By dint of his rejection of the
classical metaphysical view about mathematics, he was able to throw doubt on
a logical principle by arguing that it is unjustifiable without appeal to classical
metaphysics. But, to oppose the metaphysical doctrine of the classical mathemati-
cian, which postulates a realm of platonic mathematical objects, the intuitionist
advances a metaphysical doctrine of his own: that of a mathematical reality com-
posed solely of mental constructions.

As it is often the case with metaphysics, especially when stated so figuratively
as we have been doing, the intuitionistic idea of mathematical construction is in
desperate need of more careful and detailed explanation. Not by chance, some
authors proposed different scenarios of how mathematics should develop under
intuitionistic doctrine. One interesting example is the negationless mathematics
of Griss (1946). Another important issue is whether an intuitionist should accept
as justification constructions which are possible to effect in princible but were not
carried out, and, maybe can not be actually carried out. For instance, let B express
the claim that

(1) The sequence of digits “49027365293754” occurs in the decimal expan-
sion of π somewhere before the 101010

decimal place.

Can we, from an intuitionistic point of view, correctly assert B∨¬B? Some people
might say that to tie mathematics up with completely effected constructions made
by actual persons, even the entire human race (past, present and future), is to make
mathematics depend too much on casual contingent facts. According to them, a
general method pertaining to (1), say using Archimedes method of calculating the
decimal expansion of π, justifies the assertion of B∨¬B. To avoid losing ourselves
into terminology and exegesis, let us just assume that the position we described is
the accepted intuitionistic position. But, then, why stop at intuitionism? Why not
embrace some sort of finitism? After all, finitism seems to agree perfectly with the
general constructive position that mathematical statements express the realization
of a mental construction.

These questions were not meant as rhetorical, although we shall not attempt
to answer them. Actually, these are important philosophical questions concerning
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the objectivity and nature of mathematics. But, we used them here only with the
purpose of calling attention to the fact that intuitionism is mainly a metaphysical
doctrine in the philosophy of mathematics and, despite very reasonable claims to
its bearing in the philosophy of logic, its contributions in the field of logic are not
easy to sort out.

2.1.2 The BHK interpretation

As a disciple of Brouwer, Heyting (1930) tried to codify the principles of rea-
soning acceptable to the intuitionist mathematician. His first formulation was an
axiomatic system in the Hilbert style. There were also some attempts by the rus-
sian mathematician Kolmogoroff (1932) to interpret the intuitionist understanding
of the logical constants in terms of solutions to problems. Finally, Heyting (1971,
p. 102) gave a definitive formulation known as the BHK interpretation of the logi-
cal constants. Below we have Heyting’s formulation of the intuitionistic meaning
of the propositional connectives2.

p∧q can be asserted if and only if both p and q can be asserted.

p∨q can be asserted if and only if at least one of the propositions p and q can be
asserted.

p⊃ q can be asserted, if and only if we possess a construction r, which, joined
to any construction proving p (supposing that the latter be effected), would
automatically effect a construction proving q.

¬p can be asserted if and only if we possess a construction which from the sup-
position that a construction that proves p were carried out, leads to a con-
tradiction.

Sometimes, Heyting’s clauses are adapted. Troelstra and van Dalen (1988,
p. 9), for example, define negation as in Section 1.4 and add a clause to the effect
that there is no proof of ⊥. They also replace Heyting’s notion of assertion by a

2Heyting (1971, p. 103) insists that the clauses apply to actual propositions and he uses ger-
manic letters to distingish between propositions and propositional variables. In this context, gen-
erality is achieved by an additional clause: “A logical formula with propositional variables, say
U(p,q, . . .), can be asserted, if and only if U(p,q, . . .) can be asserted for arbritary propositions
p,q, . . .; that is, if we possess a method of construction which by specialization yields the con-
struction demanded by U(p,q, . . .)”. We maintain Heyting’s choice of letters so as to call attention
to the fact that the clauses pertain to actual sentences (or propositions). The intuitionistic position
on this matter is later embraced by Dummett (1991), as we see in Section 3.1.
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notion of proof , thus tacitly assuming that we can correctly assert a proposition
when we have a proof of it. Using their adaptation and some intuitive notion of
proof we can argue for the validity of some logical laws.

A⊃¬¬A There is no proof of ⊥. So, once in possesion of a proof of A, it is
impossible to have a proof of ¬A, that is of A⊃⊥, since that would in fact
yield a proof of ⊥.

Notwithstanding its initial plausibility as an explanation of the meaning at-
tributed to the logical constants by intuitionists, the BHK clauses face many prob-
lems as satisfactory semantic clauses for a systematic theory of meaning. For
certain, in mathematical contexts, is very hard to deny that we are only entitled to
assert a sentence A when we have a proof of A. Still, proof can not be all there is
to the meaning of mathematical statements. Otherwise, what is the meaning of a
mathematical conjecture?3

The BHK interpretation, especially the clause for implication, also suffers
from some technical problems which we mention in Chapter 3. From the per-
spective of developing an adequate semantics which is faithful to the ideia that
meaning should be based on use, we see no reason to give any special status to
the BHK interpretation. However, as we discussed at the begining of this chap-
ter, proof-theoretic semantics has also been associated with constructive logic and
mathematics. Thus, in order to also achieve the objective of providing a semantics
for justifiying intutionistic logic, proof-theoretic conceptions of validity based on
introduction rules (as seen in Section 3.2) have been developed under the shadow
of the BHK interpretation. As Dummett (2000, p. 269) says:

There is no doubt, however, that the standard intuitive explana-
tions of the logical constants [BHK] determine their intended
intuitionistic meanings, so that anything which can be accepted
as the correct semantics for intuitionistic logic must be shown
either to incorporate them or, at least, to yield them under suit-
able supplementary assumptions.

Admittedly, if we compare the BHK clauses above with the rules of natu-
ral deduction in Chapter 1, especially the introduction rules, we see that they are
mostly similar. The similarity, however, is deceptive. The differences are signif-
icant enough to advise that natural deduction and BHK be kept safely apart. We

3Some mathematicians might say that the wisest thing to do with a conjecture is to remain
silent about it until we have something relevant to say, that is, until we have a proof. It seems,
then, that mathematical practice has not always been on the wisest path.
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list bellow two noticeable differences between the BHK interpretation and natural
deduction.

• the BHK clauses are formulated in terms of proofs (assertions) while nat-
ural deduction rules expresses the conditions to infer a sentence based on
assumptions, i. e., hypotheses

• the BHK clause for implication is substantially different from ⊃I4

Surely, the first point above is a source of inspiration for the substitutional
view of open proofs. There are some problems with this view, some of which
we already mentioned. As we remarked a moment ago, one of the problems is
how to account for the meaning of conjectures. In contrast, an approach based on
deductions from assumptions does not face the same problem: conjectures, whilst
not established, can still be used in our deductions as premisses in order to extract
consequences.

Yet another problem relates to the meaning of ⊥: Granted that meaning is
defined in terms of proof, or conditional proof, what is the meaning of this con-
stant that, by definition, has no proof? Faced with this problem, Griss (1946)
abandoned negation altogether. But, as we remarked on Section 1.4, ⊥ is only
expected to be used in subordinate deductions. In this regard, the approach from
assumptions sugested by natural deduction also seems to provide a way out of the
dilemma. Inasmuch as the motivation behind them was distinct, it is not surprising
that there would be differences between natural deduction and BHK.5

My starting point was this: The formalization of logical deduc-
tion, especially as it has been developed by Frege, Russell, and
Hilbert, is rather far removed from the forms of deduction used
in practice in mathematical proofs. Considerable formal advan-
tages are achieved in return. In contrast, I intended first to set
up a formal system which comes as close as possible to actual
reasoning. The result was a “calculus of natural deduction”.
(GENTZEN, 1935, p. 176)

4Prawitz (1971, Section 2.1.1) also notes that the meaning of ⊃I is more strict than that of the
corresponding BHK clause and concludes: “There is thus not a complete agreement but a close
correspondence between the constructive meaning of the constants and the introduction rules”.

5Plato (2012, § 5) investigates the origin of Gentzen’s formulation of natural deduction from
a historical and conceptual perspective. He explores the possibility that Gentzen took inspiration
not from the BHK interpretation directly but from the axiomatic systems of Hilbert, Bernays and
Heyting. According to him, these axiomatic systems were coupled with Gentzen’s intuition that
“actual mathematical reasoning proceeds by hypotheses or assumptions, rather than instances of
axioms.”
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Apart from its strong BHK orientation, one aspect of current proof-theoretic
proposals that was directly inspired by natural deduction is the notion of canon-
icity . This notion has its inspiration on harmony and normalization procedures.
However, it seems that it was brought into the scenerio only to salvage the BHK
clauses from the imprecise and impredicative character of its formulation. No
doubt, proof-theoretic semantics faces the challenge to sort out the conceptual
role and the respective contributions of the BHK interpretation and of natural de-
duction in a satisfactory semantics.

2.2 Meaning and use

The idea that meaning relates to use is indeed a simple one but its correct un-
derstanding requires some explanation. First, a common misconception is that we
are somehow to equate the meaning of an expression with its use, any use. Such a
simple-minded approach faces two problems: first, it is not able to sistematicaly
distinguish between correct and incorrect use; and, second, it does not distinguish
between essential (or canonical) and inessential uses, such that the meanings of
expressions are not stable.

Instead, a more adequate approach is to associate meaning with a general for-
mulation of the rules governing our use of the expressions of the language. For
languages in general, the formulation of these rules may indeed seem to be a very
daunting endeavor since, for the most part, they can not simply be extracted from
explicit patterns of usage. Nonetheless, our whole linguistic practice and our be-
lief that there are some objective standards for the correct use of expressions sug-
gests that their use is governed by general rules which are implicit in our capacity
to use the language and which constitutes the meaning of these expressions.

Despite the fact that we can reasonably recognize correct and incorrect uses of
them, it is not clear what are the general rules governing the use of most common
expressions in natural languages. On the other hand, the question seems to be
more approachable when we are dealing solely with logical constants. Because,
in the context of logical constants, it is plausible to assume two general semantic
properties: compositionality and harmony.

Compositionality is indispensable in a systematic and general account of mean-
ing because it allows us to explain the use of expressions in any sentence re-
cursively by reference to its components in that sentence. In the case of logical
constants, the recursive specification is usually made in terms of some central se-
mantic notion like truth or assertability. As for harmony, it is certainly the most
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reasonable of requirements to be imposed on the general rules governing the use
of an expression if the expression has any claim at all to be considered a legitimate
logical constant (see Section 1.6).

In the next sections, we shall discuss some philosophical arguments and theses
about language and language use that are relevant for proof-theoretic semantics.
In particular, we examine Dummett’s notion of assertability as a satisfactory basis
for the theory of meaning and his arguments for abandoning theories of meaning
built around the classical notion of thruth. We also discuss the effect that some of
Dummett’s philosophical positions have on his own proof-theoretic semantics.

2.2.1 Manifestability

In the Introduction, we mentioned that semantical theories can be classified
according to their subjacent theories of meaning. Thus, denotational theories of
meaning provide a basis for model-theoretic semantics while theories of meaning
based on use provides a basis for proof-theoretics semantics. In general, theories
of meaning are concerned with the following question:

(2) What is the meaning of a sentence?

Framed in this general way, the question is somewhat vague. One may be
asking, for instance, “how does a sentence (as a sequence of symbols) get its
meaning?”. This particular way of reading (2) makes it a very broad question
in the philosophy of language: it demands a general theory of meaning for the
language in question. Such a general theory may not produce a direct answer to
particular instances like “What is the meaning of ‘2+2=4’?”. However, it does
need to provide a general framework on which this questions may be answered.

If we restrict ourselves to logical and mathematical statements, the main ques-
tion for a theory of meaning is

(3) What is the meaning of a mathematical (logical) statement?

There are, at least, two answers. First, we can think of a general framework
for explaining the meaning of a mathematical statement along the lines set out by
Frege and other logicists. On this framework, a mathematical or logical statement
is a description of certain immaterial and atemporal objects. These objects have
a reality all of themselves, independent of human cognition, practice and even
existence. This is the realist answer.
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Another approach, which is in clear opposition to the first one, holds that the
meaning of a mathematical or logical statement has to be explained in terms of
its use. And, although they can be used in many different contexts and situa-
tions, the primary use of mathematical and logical statements is in mathematical
calculations and proofs. This is the anti-realist answer.

Regarding a theory of meaning for logical and mathematical statements, Dum-
mett (1978, p. 216–218) has put foward two reasons for siding with the anti-realist.
First, he shows that, from the point of view of the philosophy of language, the
realist’s position allows for the possibility of a widespread and, worst of all, un-
detectable communicative faillure. Second, he points out that the anti-realist’s
position is more suited to the actual practice of teaching the language and can
give a clearer account of this practice.

Let us take a closer look at those two arguments. The argument for the possi-
bility of generalized communicative faillure under the realist account of meaning
runs roughly as follows. Suppose that the meaning of a mathematical statement
is indeed given by the mathematical reality it describes. Granted that this mathe-
matical reality is objective and immaterial (not given to the senses), our grasp of
the meaning of a particular mathematical statement should consist in some pri-
vate mental content, possibly obtained by intellectual intuition (or something of
the sort). Now, the problem is how can we be sure that we associate the same
content, that is, the same meaning, to the same sentence? In other words, how
can a speaker of the language be sure that he associates to a given mathematical
term, say “23”, the same meaning that some other speaker? The answer is simple:
if all there is to the meaning of a mathematical statement is a correspondence to
an immaterial mathematical reality, one speaker can never be sure to understand
such a statement the same way another speaker does.6

For very much the same reasons above, a teacher of the language cannot be
sure to have teached it correctly. The learner also cannot be sure to have learned
it correctly. However, it is a well-established fact that we do teach and learn
mathematics. And we do it by observing and correcting each other when using
mathematical expressions. Thus, any model of meaning completely alien to use
cannot give a satisfactory account of the teaching and learning of mathematics.

All the discussion so far is well-known and has been retold many times in
the literature. However, it raises more questions than it answers. For instance,
what does it mean for the realist to hold that there are immaterial and atempotal

6This argument is not exactly the same one given by Dummett (1978, p. 216–218). There,
Dummett pressuposes the thesis that the meaning of a mathematical statement is determined by
its use and proceeds from there. In contrast, we gave a kind of reductio ad absurdum of the realist
position.
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mathematical objects inhabiting a reality independent of ourselves? What is the
effect of the appeal to use as a fundamental element of meaning? How does
the anti-realist’s theory of meaning differs from the realist’s? No doubt, one of
Dummett’s more outstanding contributions to the philosophy of language and to
metaphysics is his attempt to relocate some metaphysical disputes over to the
semantic camp. According to him, the core of the dispute between the realist and
the anti-realist can be rendered as a dispute around the legitimacy of the principle
of bivalence when applied to a certain class of sentences, called the disputed class.
For instance, in the philosophy of mathematics, where anti-realism is represented
by intuitionism and other forms of constructivism, the dispute class is, obviously,
the class of mathematical sentences.

The rejection of the principle of bivalence is believed to follow from an anti-
realist commitment to language use. That is, an adequate theory of meaning based
on use can not justify the principle of bivalence as a valid semantic principle.
Thus, the appeal to use on the part of the anti-realist can be seen in the form of a
general requirement placed on the theory of meaning. This requirement, called the
requirement of manifestability, are designed to exclude conceptions of meaning
based upon a verification transcendent notion of truth.

Manifestability In a theory of meaning, the explanation of the meaning of an
expression must be made only in terms of notions and distinctions which
are completely manifestable in the linguistic behavior of the community.

It is important to understand clearly what is the danger the anti-realist is trying
to avoid. In other words, we need to undestand exactly what are those use tran-
scendent meanings that can be assigned to expressions by bivalent denotational
theories of meaning. Regarding the differences between the anti-realist (in this
case represented by the intuitionist position) and the realist theories of meaning,
Dummett (1975b, p. 22) states:

There is no substantial disagreement between the two models
of meaning so long as we are dealing only with decidable state-
ments: the crucial divergence occurs when we consider ones
which are not effectively decidable.

What do the anti-realist have to say about undecidable statements and their
meaning? Are they meaningless? According to Dummett (1991, p. 315), some
features of our language allows for the construction of undecidable statements out
of ordinary expressions whose meaning can be fully explained by reference to
their use in decidable ones. These features are:
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• Our capacity to refer to inaccessible regions of space-time, such as the past
and the spatially remote.

• The use of unbounded quantification over infinite totalities.

• Our use of the subjunctive conditional.

Therefore, the manifestability requirement does not deprive undecidable state-
ments of meaning, since they are natural linguistic constructs made possible by
some general devices of our language. However, it does deprive undecidable state-
ments of the privilege of bivalent truth.

2.2.2 Assertion

Among the speech acts we use, assertions are the ones most relevant when it
comes to knowledge in general and logic in particular. In verificationist theories of
meaning, assertability is brought to the foreground. Thus, instead of the concept of
truth, familiar from classical theories of meaning, a theory of meaning committed
to language use will take assertability as its central semantic concept. When he
discusses the uses we make of assertions, Dummett (1991, p. 103) often mentions
the aspects we already treated in connection with the deductive use of the logical
constants:

There are two aspects of the use of any assertoric sentence,
which provide the answers to the questions, “When should I
use it?” and “What can I do with it?” To know when I should
use the sentence is to know what evidence establishes it as true
and from what premisses it may be inferred. To know what to
do with it is to know what bearing its truth may have on my ac-
tions; and this involves knowing what consequences flow from
it, together with other statements accepted as true, and how such
consequences may affect the outcome of my actions.

Moreover, in contrast with the abstract concept of proposition , assertions,
as speech acts, carry with them an implicit commitment, by the person making
the assertion, to stand for its correctness. In other words, the person making the
assertion can be challenged to offer justifications for it and thus to make explicit
the grounds on which rest his knowledge of its correctness. Clearly, then, the
conditions to correctly assert a proposition and the conditions for it to be true (in
a classical sense) are different.

41



The distinction between truth conditions and assertability conditions is impor-
tant for the understanding of the differences between classical and verificationist
theories of meaning. For instance, Martin-Löf (1996, p. 23) formulates the dis-
tinction thus:

Even if every even number is the sum of two prime numbers,
it is wrong of me to say that unless I know it, that is, unless I
have proved it. [. . . ] So the condition for it to be right of me to
affirm a proposition A, that is, to say that A is true, is not that A
is true, but that I know that A is true.

A problem we discussed in Section 2.1.2 reappears here: if the criterion for an
assertion to be correct is for us to have a justification for it, and, if meaning are to
be explained in terms of assertability, then what becomes of conjectures or, for that
matter, of suppositions “for the sake of argument”? The other aspect mentioned
by Dummett in the quote above, “What can I do with it?”, may account for them.
But, then, it conflicts with the idea that the correct assertion of a sentence demands
conclusive proof or evidence from the person making the assertion.

A way to conciliate our intuitions is to introduce the notion of conditional
assertion . Thus, we can say that the assertion of some particular sentence A is
conditional on the assertion of B and C, for example. In other words, in a subordi-
nate argument, we are conditionally asserting the conclusion, that is, we claim that
it would be correct to assert A on the condition that it is correct to assert B and C.
In full generality, the idea implies that every assertoric sentence of the language
should be provided with assertability conditions. As a result, we can see that the
notion of assertion influenced considerably some current proof-theoretic accounts
of the semantics of logic. The influence can be felt, for instance, in the notion of
basic rules B which provide assertability conditions for atomic sentences. These
rules license the assertion of atomic sentences from atomic sentences.

Consequently, most proof-theoretic accounts of logic figure a notion of valid
canonical argument as trees proceeding from atomic premisses, or atomic deriva-
tions by basic rules, such that earch node represents an assertion, or conditional
assertion, and each step is a passage from assertions to assertions. Certainly, this
approach has the generality needed if we are trying to give a complete verifica-
tionist account of the whole language (purely descriptive sentences included). In
an account of logical validity, however, it has the cumbersome effect that, in prin-
ciple, we have to deal with bases and basic rules. Of course, the assertability
conditions of any particular descriptive atomic sentence have little, if anything,
to do with logical validity7. Notwithstanding, proof-theoretic definitions of valid-

7Sure enough, we understand that, regarding basic systems, the main concern is not purely de-
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ity, like that of Prawitz (1971), end up with formulations relative to any basis B
(or arbitrary monotonic extensions of them). Nonetheless, even with the help of
the concept of conditional assertion some difficulties persist. There remains the
problem of the subordinate arguments for ⊥: we are not willing to assert ⊥ under
any condition whatsoever.

If we abandon the notion of valid canonical argument as described above and,
instead try to explain validity on the basis of correct inferrability from assumptions
along the lines sketched on Chapter 1, we may be able to avoid the need for bases
and basic rules altogether.

scriptive sentences but some especial non-logical, yet non-descriptive, mathematical sentences. As
mentioned earlier, we are interested exclusively in logic and shall not consider foundational math-
ematical questions directly (save for its historical influence in proof-theoretic semantics for logic).
Nonetheless, as a side note, I (the author) believe that the unwavering temptation to accommodate
an account of the necessity and objectivity of mathematical sentences has been responsible for part
of the problems faced by most theories of logic since the good old times of Frege and Russell.
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Chapter 3

Proof-Theoretic Validity

The standard constructive explanation of the logical constants, the so called
BHK interpretation, doesn’t lend itself easily to the inductive treatment required
for a definition of validity. The BHK clause for implication, for instance, seems to
be strongly impredicative. It refers to any construction of the antecedent and that
might involve a construction of the implication itself (for example, in a “round-
about” proof). This problem is pointed out by many authors, among which are
Gödel (1995) and Dummett (2000, Section 7.2). Díez (2000, p. 410), for instance,
formulates the problem as follows:

The construction which is being defined and which proves p⊃q
must be able to transform any possible proof of p into a proof
of q; as no boundary is put on the complexity of those possible
proofs of p, they could include some complicated roundabout
proofs which involved reference to the sentence p⊃q itself, and
hence to the same proof being defined. In sum: the definition
of a proof of p⊃q appeals to a totality of proofs, with some of
which the very proof of p⊃q could be intimately related.

Nevertheless, relying on the notion of canonicity made viable by the harmo-
nious behavior of natural deduction rules, Prawitz (1971) and Dummett (1991)
have proposed proof-theoretic inductive definitions of validity intended for justi-
fying predicate intuitionistic logic. Yet, there has been some debate about whether
these definitions are correct. Sandqvist (2009), for instance, have stated that some
proof-theoretic approaches would in fact yield a constructive justification of clas-
sical logic. Sanz, Piecha and Schroeder-Heister (2012), in particular, argued that
Prawitz’s proposal results in a conflation of admissibility1 and derivability for the

1A rule r is admissible in a formal system S if, for every sentence A, whenever there is a closed
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fragment {⊃} of propositional logic. They have shown that Peirce’s rule for ba-
sic sentences is admissible and thus valid according to Prawitz’s definition. As
we saw on Chapter 2, a proof-theoretic justification of classical logic will make a
strong impact on Dummett’s program.

The purpose of this chapter is to evaluate the applicability of those same crit-
icisms to Dummett’s proposal. In what follows, we shall review Dummett’s def-
inition of validity in detail, giving references whenever necessary to support the
formulations2. Sometimes, we simplify references by adopting the convention
that unqualified page references in this chapter always refer to Dummett (1991).
But, before stating the definitions, we explain briefly some peculiarities of Dum-
mett’s approach.

Dummett (1991) considers first, second and third grade proof-theoretic justifi-
cations for logical laws. Each one is a more powerful justification procedure than
the previous. Justifications of the first grade consists merely in the derivation of a
rule from other ones taken as given. In other words, for this kind of justification
we assume that some given set of rules are valid and try to justify other rules by
deriving then from the given set.

On the other hand, second grade justifications introduce the main idea of
proof-theoretic semantics: the introduction (or elimination) rules fix the mean-
ing of the logical constants they govern. As we saw on Section 1.6, this insight
dates back to some remarks of Gentzen to the effect that the introduction rules
are definitions of which the elimination rules are only “consequences”. From the
verificationist point of view adopted by Dummett (1991, p. 246), the legitimacy
of this idea rests on the fact that, if the introduction and elimination rules for
a given constant are in harmony (the elimination rules are only “consequences”
of the introduction rules or vice-versa), then the addition of these rules yields a
conservative extension of the language.

In order to give a more precise content to Gentzen’s remarks, Dummett de-
velops a general justification procedure which, given a set I of introduction rules,
would validate all other rules with respect to them, including the corresponding
elimination rules for the relevant logical constants. The justification procedure
amounts to a definition of validity with respect to a given set I of introduction
rules. We do not follow Dummett’s terminology when we call it the verification-
ist justification procedure. Another procedure, the pragmatist justification proce-
dure, validates inference rules with respect to a given set E of elimination rules.

proof of A in the system S extended by the rule r, then there is a closed proof of A in the system S
without the rule r (assuming that r did not initially belonged to S).

2We avoid explicit quotations so as to keep the chapter within reasonable proportions. Should
any doubt arise, the reader is advised to look up for himself the relevant passages.
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Third grade proof-theoretic justifications are introduced to deal with discharged
hypotheses (p. 259–260) and certain kinds of ancillary premisses (p. 282–283),
in the case of introduction and elimination rules, respectively. Dummett (1991,
p. 286) claims that both justification procedures assures us of intrinsic harmony,
that is, harmony between the introduction and elimination rules for a given con-
stant γ, as discussed in Section 1.6.

However, there is still a further requirement: the requirement of stability. This
requirement appeal to both kinds of justification procedures as means to guarantee
that the set I [E] of rules collectively determine a coherent inferential practice
(p. 287–289). Dummett believes that, in this case, we achieve not only intrinsic
harmony, but also total harmony. So, to establish total harmony, the requirement
of stability needs to be satisfied.

3.1 Preliminary notions and definitions

The following definitions will be used in our discussion of both the verifica-
tionist and the pragmatist justification procedures. They deal with the notions of
argument and rule of inference. As a matter of fact, an intuitive understanding
of these notions have been assumed in our discussion so far. The definitions are
not meant to replace the intuitions but rather to avoid misunderstandings with the
techinical material in next sections.

An argument Π is a tree composed of sentences. The sentence at the root of
the tree is called the conclusion of the argument. If an argument Π is composed
according to a system of rules S, we say that Π is a deduction in S. We understand
arguments as being composed from top to bottom, that is, from leaves to root.
Every sentence A occuring in a path from a leaf to the root of an argument Π

determine a subargument Π1 in the obvious way with A as its conclusion. A
top occurence of a sentence A can be discharged by the application of a rule r
yielding a conclusion B which, together with all the other sentences below, do not
depend on A. Informally, we tend to use “hypotheses” for top sentences that were
discharged somewhere in the argument under consideration and “premisses” for
sentences that were not discharged.

It is important to notice that, following Heyting (1971, p. 101), Dummett
(1991, p. 255–256) considers deductive arguments to be composed of actual sen-
tences and thus his definitions apply to these concrete arguments. Accordingly,
to show the validity of a schema representing an inference rule we need to estab-
lish the validity of any application of it, that is, of any argument resulting from

46



the substitution of actual sentences for the schematic letters. However, because
propositional logic should be sufficient for our purposes, the use of schematic let-
ters to stand for actual sentences does not pose any special problems3. For the
same reason, we ommitt complications and clauses in the definitions dealing with
quantification and open sentences.

Definition 1. A sequent is an ordered pair Γ→A in which Γ, called the antecedent,
is a set of sentences and A, called the sucedent, is a single sentence (p. 185).

A sequent Γ→A represents a deduction from premisses Γ to conclusion A.
They are not considered to be among the sentences appearing in argument trees
but are only a device intended to simplify our notation by spelling out what are
the premisses on which depends some occurence of a sentence in an argument tree
(p. 254).

Definition 2. An one-step argument is an ordered pair 〈Γ1→A1 . . .Γn→An, ∆→
B〉 consisting of a set of sequents Γ1→A1. . . Γn→An, called the base sequents,
and a single sequent ∆→B, called the resultant sequent.

An inference rule is represented by an one-step argument schema. The def-
inition of an one-step argument, which takes arguments to be a transition from
sequents to sequents is needed mainly in the general case, for instance, when we
are dealing with rules that discharge hypotheses (p. 186 and 264). In such gen-
eral cases, we may talk about the sucedent B of the resultant sequent simply as
the conclusion and its antecedent ∆ simply as the set of premisses. We call a dis-
charged hypothesis any sentence A such that A is in the union Γ1∪·· ·∪Γn, but is
not in ∆. Otherwise, when we are dealing with rules of a more simple kind, they
can be represented simply as a single sequent ∆→B where the sentences in ∆ are
the premisses and B is the conclusion. This distinction between rules is also em-
ployed by Prawitz (1965, p. 22–23), where he distinguishes between “inference
rules” and “deduction rules”.

We use the familiar natural deduction representations of arguments and ar-
gument schemas and do not bother with spelling out the premisses of each sen-
tence occurence by using sequents. Since we shall not discuss any complex in-
ference rule discharging hypotheses, the usual natural deduction representation
is sufficient and more clear. For instance, Peirce’s rule may be represented with
(A⊃B)⊃A as premiss and A as conclusion as shown below.

3Since we don’t need to worry about open sentences, we just let the schematic letters stand for
an arbitrary closed sentences. In this way, our reasoning is guaranteed to yield a general method
applicable to any actual deduction.
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(A⊃B)⊃A
A

According to the standard proof-theoretic view, for a complete semantic spec-
ification, besides inference rules governing the assertability of complex sentences,
we also need criteria for the assertability of atomic sentences. Usually, these crite-
ria are given by a set of rules B, called boundary rules or basic rules, of the form
α1 . . .αn−1/αn allowing the inference of atomic sentences from other atomic sen-
tences. In fact, the exact form of the basic rules are controversial. Prawitz (1971,
p. 276) takes them to be production rules that don’t discharge hypotheses and
whose conclusion are always atomic. Dummett (1991, p. 186), on the other hand,
allows for complex conclusions in boundary rules, however his definition of va-
lidity with respect to a given set I [E] of introduction [elimination] rules are such
that they assume the basic rules to be production rules with atomic conclusions,
as can be seen from the definitions given below4.

3.2 Verificationism

In their paper, Sanz, Piecha and Schroeder-Heister (2012) prove, in the frag-
ment {⊃} of natural deduction, that given a proof of the premiss of Peirce’s rule
for atomic ϕ and ψ, we have a proof of the conclusion. Because of the way Prawitz
(1971) frames his inductive clause for ⊃, this amounts to a validation of Peirce’s
rule in his semantics. Adapting their argument to Dummett’s approach, we need
to show whether Peirce’s rule is valid or invalid given any basis B of production
rules (or, as Dummett calls them, boundary rules) and the set I whose sole rule is
⊃I. Since ⊃I may discharge hypotheses, we must use third grade proof-theoretic
justifications. That will be the case for the remainder of the text. Now, before
proceeding to the verificationist definition of validity, we need to fix some termi-
nology.

Definition 3. A sentence occurrence is in the main stem of an argument Π if every
sentence intervening between it and the conclusion of Π (inclusive) depend only
on the premisses of Π. Otherwise, if a sentence occurrence that is not in the main
stem lies immediately above one that does, then it is the final conclusion of a
critical subargument (p. 260).

As we can easily see, the purpose of the concept of main stem is to keep track
of the discharge of hypotheses as we move up from the root of the argument to-

4According to Definition 3, a canonical argument with complex conclusion is required to have
as its last step an application of an introduction rule.
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wards its leaves. Meanwhile, as we thus move, examining each of the possible
branches in turn, we identify subarguments whose conclusion depend on addi-
tional premisses. We recall that, with regard to the discharge of hypotheses, as
we remarked on Section 1.1, the rule ⊃I specifies two distinct conditions for its
application. Thus, when faced with an application of ⊃I to conclusion A⊃B, the
occurence of B immediately above A⊃B is, or is not, in the main stem depending
on whether an hypotheses was actually discharged.

Example 1. In the following example, only the conclusion (B∧C)⊃ (A∧B) is in
the main stem. All the deduction up to that point is a critical subargument.

A
[B∧C]

B
A∧B

(B∧C)⊃ (A∧B)

It is interesting to notice that, when considering the example above, Dummett
(1991, p. 263) doesn’t follow his own definition. He claims that both the premiss
A and the final conclusion (B∧C)⊃ (A∧B) are in the main stem. However, since
the sentence A∧B (which depends on the hypotheses B∧C) occurs in the path
from A to the conclusion, we must admit that A is not, after all, in the main stem.
Still, this blunder does not affect the validity of the inference of (B∧C)⊃ (A∧B)
from the premiss A for which he was arguing in this passage.

Definition 4. We say that a given argument is canonical, valid or not, if the fol-
lowing conditions hold:

(i) all its (undischarged) premisses are atomic sentences;

(ii) every atomic sentence in the main stem is either a premiss or is derived one
of the basic rules;

(iii) every complex sentence in the main stem is derived by means of one of the
introduction rules.

The notion of a canonical argument, as expressed by the definition above,
features some important properties. As a consequence of item (iii), we can be sure
that canonical arguments always have an application of an introduction rule as its
last step (assuming the conclusion to be a complex sentence). This property is
also emphasized by Prawitz (1971, 2006). From examination of item (ii), we also
notice that canonical arguments whose conclusion are atomic sentences proceed
only by basic rules from atomic premisses (if there are any) since the atomic
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conclusion is, by Definition 3, on the main stem. With respect to item (i), however,
Dummett deviates from other authors, in particular from Prawitz (1971), when he
accepts atomic premisses to stand undischarged (open) in canonical arguments.

Definition 5. A supplementation of a given arbitrary argument is the result of re-
placing each complex premiss by a valid canonical argument having that premiss
as its conclusion (p. 261).

As we shall notice latter, in Definition 6, transformations of supplementations
are the main element in the verificationist justification procedure. The notion of a
supplementation will become completely clear only after we define valid canon-
ical arguments. We can clearly see Dummett’s unwavering adhrence to the sub-
stitional view of open proofs when he defines supplementations as the result of
substitution of valid canonical argument for complex premisses. Another impor-
tant thing to notice is that the premisses of a supplementation are exactly those of
the valid canonical arguments substituted plus any other atomic premisses already
in the supplemented argument.

Example 2. When evaluating the validity of an inference rule, in order to come
up with a general procedure, we need to consider every possible supplementation
of its premisses. Then, by refletion on the definitions, we obtain some properties
which can help us to effect the necessary transformations. Thus, let us consider
the following inference rule.

B∨C
(A⊃B)∨ (A⊃C)

Now, if we take our set I of introduction rules to contain ∨I and ⊃I, the supple-
mentations of any argument resulting from the substitution of actual sentences for
the schematic letters of the inference rule above will take one of the forms below,
where α1 . . .αn and β1 . . .βn are atomic premisses.

α1 . . .αn
Σ1
B

B∨C
(A⊃B)∨ (A⊃C)

β1 . . .βn

Σ2
C

B∨C
(A⊃B)∨ (A⊃C)

We also note that if B and C are atomic then, by item (ii) of Definition 4,
both subarguments determined by Σ1/B and Σ2/C are derivations from atomic
premisses α1 . . .αn and β1 . . .βn, respectively, proceeding solely by basic rules.
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Definition 6. An arbitrary argument is valid if we can effectively transform any
supplementation of it into a valid canonical argument with same premisses and
conclusion. Furthermore, a canonical argument is valid if all its critical subargu-
ments are valid (p. 261).

Although Dummett (1991, p. 64) demands an argument to be an actual com-
plete deduction composed of sentences, he claims that his definition “takes no
overt account of more than the initial premisses and final conclusion of the ar-
gument”. In other words, despite being applicable directly to arguments, Defini-
tion 6 can be used to construct a general procedure capable of validating one-step
argument schema (or inference rules) with respect to a given set I of introduction
rules.

Finally, in order to the definition of validity from a verificationist perspective
to be complete, there is still a major ingredient to be discussed: the basic rules.
As we already saw in Section 3.1, these rules license the inference of atomic
sentences from atomic sentences. With the adoption of the apropiate set of basic
rules, it is possible to formalize the deductive relations that appear in mathematical
theories. Much of the interest for the investigation of basic rules is because they
provide a general framework for the study of formal systems, not only of logic,
but also of mathematics, even though basic rules does not pertain, at least diretly,
to the notion of logical validity.

However, Dummett’s definitions for the verificationist justification procedure
do incorporate basic rules and there is no way around them, even though his defi-
nitions are intended for logical validity. Throughout his book, he seems to waver
between the benefits offered by basic rules on the one hand and, on the other hand,
the intuition that basic rules are irrelevant in the justification of purely logical rules
of inference. In fact, Dummett (1991, p. 273) explicitly asserts the independence
between basic (or boundary) rules and the notion of logical validity:

We originally admitted, as occurring within deductive proofs
of the kind with which we are concerned, boundary rules al-
lowing the inference of an atomic conclusion from atomic pre-
misses: these were, of necessity, left unspecified. Our orig-
inal intention was that the boundary rules should be deduc-
tively valid. If we now include among them principles of non-
deductive (and therefore fallible) inference, this will have the
effect that a ‘valid’ argument, even if canonical, may have true
initial premisses but a false final conclusion. It will obviously
not affect the justification procedure, however, as a means of
determining the validity of logical laws.
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Unfortunately, since Dummett adopts the substitutional view of open proofs,
the basic rules become an indispensable element in the verificationist justifica-
tion procedure. Granted that the explicit consideration of basic rules cannot be
avoided, the question now is how to generalize the justification procedure such
that we obtain logical validity instead of validity with respect to some particular
set of basic rules. With respect to this question, Dummett (1991) himself does not
offer many clues. Judging from the quotation above, he seems to assume that an
arbitrary set of basic rules are somehow given and that the justification procedure
can be applied without relying on any assumption about the rules or their struc-
ture. If the basic rules are indeed irrelevant for the analysis of logical validity, the
right approach would be to leave them out of consideration altogether. However,
the justification procedure that come out of Dummett’s definition cannot possibly
avoid the explicit consideration of basic rules (see Definition 4).

There are three distinct ways that we can generalize the justification procedure
with respect to the basic rules so as to arrive at a notion o logical validity:

empty base one way to avoid that any particular feature of some base interfere
with the justification procedure is to consider an empty base, that is, B = /0.

all basis another way would be to require that, for an inference to be logicaly
valid, the justification procedure must be capable of justifying it in all the
possible bases.

monotonic extensions of basis yet another way would be to adopt the strategy of
Prawitz (1971) which relies on monotonic extensions of an arbitrary base.
An advantage of this strategy is that it incorporates the intuition that a sen-
tence, once proved, remains proved. The strategy achieves generality be-
cause the base B to be extended as an arbitrary base.

Let us see which one of the three ways above is more adequate. On light of
the definitions, consider the following inference, where ϕ and ψ are atomic:

ϕ⊃ψ

ψ (3.1)

By Definition 6, for (3.1) to be valid any supplementatio of ϕ⊃ψ must be
transformed in a valid canonical argument for ψ depending on the same premisses.
If B = /0, every possible suplementation involves the assumption of ψ5. Among
them, the simplest one is:

5In contrast with Prawitz (1971) and others, Dummett (1991) accepts open atomic premisses
in canonical arguments (see Definition 4).

52



ψ

ϕ⊃ψ

ψ

By Definition 4, the assumption of ψ is a valid canonical argument for ψ.
Therefore, in the empty base, we can establish the validity of (3.1). Moreover, if
we choose the empty base as the right way to account for logical validity, then
(3.1) would be logicaly valid, which is unacceptable6. Also, it does not make
sense to require that the supplementations to be considered are those belonging to
all the basis, because their common denominator woulb be the empty base and we
will be faced with the same problem.

There are still two alternatives. The first of then suggets that the definition
of validity, when applied to logical inferences, requires a quantification over all
bases. In other words, an inference would be logically valid only if it can be
validated in all bases. This approach avoids the problem with the empty basis
since the inference rule used in (3.1) above is not valid in a basis containing the
rule ϕ/ψ.

To consider all bases is equivalent to consider a lattice of bases such that the
minimal element is the empty basis and the maximal element is a basis containig
all possible combinations of atomic rules. The elements of the lattice are related
by inclusion, i. e., extension by addition of basic rules. Therefore, validity in all
bases is equivalent to validity by monotonic extensions of the empty basis.

Theorem 1. Let ϕ and ψ be atomic closed sentences. Then, given any set B of
production rules, Peirce’s rule

(ϕ⊃ψ)⊃ϕ

ϕ

is valid in B by the verificationist justification procedure with respect to ⊃I.

Proof. We have to show that we can effectively transform any supplementation
into a valid canonical argument for ϕ depending on the same premisses. Suppose
we have a supplementation Π1, in an extension C of B, depending on premisses
α1 . . .αn obtained by substitution of (ϕ⊃ψ)⊃ϕ by a valid canonical argument as
specified by Definition 5. Thus, the penultimate step in Π1 is an application of ⊃I
as shown below.

α1 . . .αn
Σ1
ϕ

(ϕ⊃ψ)⊃ϕ

ϕ (Π1)
6This critique is due to Warren Goldfarb.
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We have two possibilities to consider: either (1) the penultimate occurence of ϕ is
in the main stem and we already have a valid canonical argument for ϕ from the
same premisses, by item (ii) of Definition 4, or (2) ϕ is not in the main stem and
we have a critical subargument Π2 with ϕ as conclusion (by Definition 3).

In case (2), ϕ depends on a discharged hypotheses (again, by Definition 3).
Considering that it was discharged by an application of ⊃I whose conclusion is
(ϕ⊃ψ)⊃ϕ, the hypotheses can only be ϕ⊃ψ.

ϕ⊃ψ,α1 . . .αn
Σ1
ϕ (Π2)

By Definition 6, the critical subargument Π2 is a valid argument. From the va-
lidity of Π2, we show how to obtain a valid canonical argument for ϕ in C from
atomic premisses α1 . . .αn. Because Π2 is valid, we have a procedure to effec-
tively transform any supplementation of Π3, in an extension D of C, in a valid
canonical argument for ϕ from premisses α1 . . .αn,β1 . . .βn.

β1 . . .βn
Σ2
ψ

ϕ⊃ψ , α1 . . .αn
Σ1
ϕ (Π3)

In particular, in the extension D∗ = C∪{ϕ/ψ}, we have a valid canonical argu-
ment from premisses α1 . . .αn only, although in basis D∗. By Definition 4, this
valid canonical argument proceeds solely by the basic rules of D∗.

α1 . . .αn
Σ4
ϕ

ψ

Σ5
ϕ (Π4)

We examine the valid canonical argument for ϕ in D∗. If the rule ϕ/ψ is not used,
then we have in fact a valid canonical argument in the basis C from premisses
α1 . . .αn and our proof is complete. Else, if the rule is used, we take its first
application as depicted in Π4 above. Since the rule ϕ/ψ does not occur in the
subargument Σ3/ϕ, we obtain the required valid canonical argument for ϕ in C
from premisses α1 . . .αn.

As can be seen from the validation of Peirce’s rule, the verificationist defini-
tion of validity not only affords a criterion to tell valid rules from invalid ones,
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but actually amounts to a justificatory procedure. Apparently, however, Dummett
(1991, p. 270) did not envisaged the possibility that the verificationist justifica-
tion procedure would validate Peirce’s rule. A few pages after the definition of
validity, he remarks:

“On a realist meaning-theory, however, the correct logic will be
classical; and there will be many classically valid laws involv-
ing those logical constants that cannot be validated by appeal to
the introduction rules governing them, such as those expressed
by the classically valid schemata (A⊃B)∨(B⊃A), (A⊃B)∨A,
((A⊃B)⊃A)⊃A.”7

Indeed, once Peirce’s rule is valid, we can obtain all classical tautologies in
the fragment {⊃} of the language of propositional logic. If we add ∧I and ⊥I
(or ⊥E) as rules to the implicational fragment —which, since Peirce’s rule is
valid, behaves classicaly—, we obtain a complete set of logical constants powerful
enough to account for all valid propositional classical reasonings (with the other
constants being defined in terms of implication, conjuction, and ⊥). This state
of affairs certainly frustrates the expectation that proof-theoretic validity provides
justification only for constructive reasonings (see Chapter 2). Does an approach to
meaning based on use lead to the justification of the same classical reasonings as
the classical denotational approach? What could be the reasons for this somewhat
undesirable outcome?

By Theorem 1, the assumption that we have a putative valid canonical ar-
gument for (ϕ⊃ψ)⊃ϕ leads necessarily to the conclusion that we have a valid
canonical argument for ϕ from the same premisses. The critical point in the proof
is when, after the first supplementation, we assume ϕ not to be in the main stem
and consider the critical subargument from ϕ⊃ψ (possibly with some atomic pre-
misses). The assumption that ϕ is not in the main stem signals the discharge of
hypotheses and, in most cases, indicates that ϕ depends on more premisses than
the conclusion of the supplementation. But, even under the assumption that it is
not in the main stem, we discover, after applying the definitions, that no hypothe-
ses was effectively discharged and, consequently, our valid canonical argument
for ϕ depends on the same atomic premisses as the conclusion of our instance
of Peirce’s rule. We believe that the reason for this result lies in the restriction
of the supplementations to substitution of valid canonical arguments from atomic
premisses.

7Note that the last schema in this quotation is the so called Peirce’s law which can be obtained
from Peirce’s rule by ⊃I. The schema mentioned by Dummett are rendered in our own notation.
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If we forget the substitutional view of open proofs and concentrate on the
notion of harmony discussed in Section 1.6, we shall come to a somewhat different
understanding of how Peirce’s rule should be handled: all the conditions necessary
to infer (A⊃B)⊃A, assuming it was infered by means of ⊃I, should license the
inference of A (there is no need to suppose A and B to be atomic). The conditions
to obtain (A⊃B)⊃A are depicted bellow.

Γ
Σ1
A

A⊃B,Γ
Σ2
A

On the left, A is in the main stem and there was no discharge. On the right, A is
not on the main stem and A⊃B was discharged. We can represent these conditions
by the sequents Γ→A and Γ,A⊃B→A, respectively. We propose that supple-
mentations, when needed8, consists in the conditions to apply the corresponding
introduction rule.

For supplementations with A in the main stem, as on the left above, we already
have the required valid canonical argument for A. For supplementations with A not
in the main stem, we do have a valid argument for A (which is the conclusion of
a critical subargument) but it is not garanteed to depend on the same premisses Γ.
Indeed, besides Γ, the valid argument for A depends on A⊃B. Although the result
already seems obvious, we can analyse further since we know, By Definition 6,
that from all the conditions to obtain A⊃B by ⊃I (supplementations), we can
obtain a valid canonical argument for A from the same premisses. So, we continue
and consider the supplementations of A⊃B.

Γ
Σ3
B

A,Γ
Σ4
B

If B is on the main stem, there was no discharge of hypotheses and B depends,
at most, on the same premisses Γ. As we remarked above, by Definition 6, this
valid canonical argument for B can be transformed into one for A from the same
premisses Γ, or less. However, if B is not in the main stem, the premisses are not
limited to Γ but include also the hypotheses A. There is no general way to dis-
pense with this hypotheses and, consequently, no way to obtain a valid canonical
argument for A from the same hypotheses Γ. Therefore, Peirce’s rule is not valid.

8Optionally, we can just assume complex sentences as premisses without supplementation.
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The notion validity used above does not make validity ammount to a trans-
formation of valid canonical arguments into valid canonical arguments. On the
other hand, Dummett’s verificationist definition of validity —based on the idea
of showing that if we have a proof (valid caninical argument) for the premisses,
then we have a proof (valid caninical argument) for the conclusion— resemble
the notion of admissibility. It seems that the verificationist justification procedure,
in the presence of ⊃I, would validate any admissible rule involving this logical
constant9. As a means to increase the plausibility of this conjecture, let us try to
apply the verificationist justification procedure to a well-known admissible rule
due to Mints (1976).

Theorem 2. Let ϕ, ψ and χ be atomic sentences. Then, given any set B of pro-
duction rules, Mints’ rule

(ϕ⊃ψ)⊃ (ϕ∨χ)

((ϕ⊃ψ)⊃ϕ)∨ ((ϕ⊃ψ)⊃χ)

is valid with respect to ⊃I and ∨I.

Proof. We show that any supplementation will give us a valid canonical argument
from the same premisses for the conclusion. Suppose a supplementation Π1, in an
extension C of B, as shown below.

α1 . . .αn
Σ1

ϕ∨χ

(ϕ⊃ψ)⊃ (ϕ∨χ)

((ϕ⊃ψ)⊃ϕ)∨ ((ϕ⊃ψ)⊃χ) (Π1)

There are two possibilities. Either (1) ϕ∨χ is in the main stem and we have valid
canonical arguments for either ϕ or χ from the same premisses. With any one of
those, we can easily obtain a valid canonical argument for ((ϕ⊃ψ)⊃ϕ)∨ ((ϕ⊃
ψ)⊃χ) by means of ⊃I and ∨I. Or (2) ϕ∨χ is not in the main stem, in which
case the critical subargument Π2 below is valid.

ϕ⊃ψ,α1 . . .αn
Σ1

ϕ∨χ (Π2)

By Definition 6, any supplementation Π3, in an extension D of C, of the critical
subargument Π2 can be effectively transformed into a valid canonical argument

9Also, this is basically what is argued by Sanz, Piecha and Schroeder-Heister (2012) for the
semantics of Prawitz (1971).
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for ϕ∨χ, no new premisses required besides those eventually introduced by the
supplementation procedure. Similarly to the proof of Theorem 1, we consider
the extension D∗ = C∪{ϕ/ψ}. In D∗ = C∪{ϕ/ψ}, we have a valid canonical
argument for ϕ∨ χ from premisses α1 . . .αn. Next, still following the proof of
Theorem 1, we obtain a valid canonical argument for ϕ from α1 . . .αn, now in
the basis C. Finally, by application of ⊃I and ∨I, we construct a valid canonical
argument for ((ϕ⊃ψ)⊃ϕ)∨ ((ϕ⊃ψ)⊃χ) in basis C from premisses α1 . . .αn.

As is the case with Peirce’s rule, Mint’s rule is not derivable in natural de-
duction systems (without the classical rule for ⊥). These localized failures of the
verificationist justification procedure may pose serious problems to the philosoph-
ical program vindicated by Dummett. In his paper, Sandqvist (2009) took some
steps towards questioning the widespread belief among anti-realists that the clas-
sical canons of reasoning presuppose the principle of bivalence. He showed how
a certain constructive semantics would validate the double-negation elimination
rule, thus justifying classical logic. Notwithstanding, he remarks (p. 215):

“In endeavouring to cook a classical logic out of constructively
kosher ingredients, I am not trying to establish that logic as the
only justifiable one. In particular, I do not mean to suggest that
the logical constants, as intuitionists construe them, are ‘really’
subject to classical laws of inference. Our treatment of condi-
tionals, absurdity and universal quantification certainly differs
in some respects from standard intuitionist accounts; that is how
we managed to achieve classicality.”

If our definitions are an appropriate statement to what is proposed by Dum-
mett (1991), then we have reasons to believe that the criticisms apply very well,
at least in the propositional level10. In fact, Sandqvist’s clause for the absurdity
constant ⊥ is exactly that of Dummett (1991, p. 295). If double-negation elim-
ination is valid under Dummett’s semantics then, by defining the other classical
constants with the help of⊃, ∧ and⊥, we have a constructive account of classical
reasoning, apparently without assuming bivalence.

10Some people will notice that our examples of validation of rules are not similar enough to
Dummett’s own examples. However, a careful examination, we believe, will show that Dummett’s
examples are, sometimes, in conflict with his definitions. It was necessary for us, then, to make
a choice. We decided to bear with Dummett’s definitions instead of trying to extract from the
examples whatever was his actual intentions for the workings of the justifications procedures.
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3.3 Pragmatism

Despite his emphasis on introduction rules and verificationism, Dummett be-
lieves we might as well take a pragmatist stance and consider elimination rules
instead. So, just as he did with the introduction rules, he gives a justification pro-
cedure intended to validate all rules of inference given a set E of elimination rules.
In this section, we carry our purpose of evaluating the validity of admissible rules
in Dummett’s semantics to this new justification procedure.

Definition 7. In an elimination rule for a given constant γ the sole premiss which
is required to have γ is called the major premiss, all others, if there are any others,
we call minor premisses. Such an elimination rule can be a vertical rule, when
the conclusion of any of its minor premisses coincides with the conclusion of the
rule, or reductive otherwise. We require that the minor premisses of a vertical
rule, which we may call vertical premisses, actually depend on hypotheses dis-
charged by the elimination rule. In case a minor premiss is not vertical we say it
is horizontal (p. 283).

Example 3. We recall from our discussion in Chapter 1 that elimination rules
express the deductive use of sentences as premisses from which we extract conse-
quences. Some elimination rules are applicable only in the presence of a specific
context represented by the minor premisses. The minor premisses can be deduc-
tions whose conclusion is also the conclusion of the rule, in which case, as stated
in the definition, we call them vertical premisses. We reproduce some natural
deduction elimination rules so as to illustrate the definition above.

A∨B

[A]....
C

[B]....
C

C ∨E A A⊃B
B ⊃E

As we can see ∨E is vertical and, therefore, its two minor premisses are verti-
cal premisses. In contrast, the elimination rule for ⊃ is reductive and its minor
premiss is horizontal.

Definition 8. We call the occurence of a sentence principal if all the sentences on
the path from itself to the conclusion are either a major premiss of an elimination
rules or a premiss of a basic rule. Also, if a principal sentence is premiss of a
given argument, we call this argument proper. Furthermore, there is no horizontal
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premiss in the path from a placid sentence occurrence to the conclusion of the
argument (p. 284).

Example 4. In the argument below, the occurrences of C as minor premisses of ∨E
are not placid, since the conclusion of the rule C (in bold face) is also a horizontal
minor premiss of ⊃E.

A∨B

[A]
Σ1
C

[B]
Σ2
C

C C⊃D
D

Definition 9. A canonical argument has the following properties (p. 284):

(i) its conclusion is an atomic sentence

(ii) it is proper

(iii) the subargument for any placid vertical premiss is proper

Moreover, an argument which is not canonical and whose conclusion is a horizon-
tal premiss is called a critical subargument.

The item (iii) of the definition above is intended to avoid vertical premisses
of elimination rules which are not proper and whose conclusion are also major
premiss of an elimination. Still, there is a procedure, familiar from the reduction
of segments in normalization for intuitionistic logic, which can bring arguments
violating item (iii) into canonical form. Thus, consider the argument of Exam-
ple 4. In addition, suppose that the subargument for the vertical premiss of ∨E is
not proper. It can be made proper by rearranging it as below.

A∨B

[A]
Π1
C C⊃D

D

[B]
Π2
C C⊃D

D
D

After the transformation, the vertical premiss has C⊃D as a principal premiss and
so, by Definition 8, is proper. The same transformation can be iterated such that
there is no loss of generality if we assume the conclusions of vertical premisses to
be always atomic.

60



At some point in the discussion of the pragmatist justification procedure,
Dummett occupies himself with canonical arguments whose critical subarguments
have the same degree of the canonical arguments in which they occur. This forces
him to make a distinction between validity in a broad and narrow sense, when
applied to canonical arguments. Despite the distinction, Prawitz (2007, note 15)
makes what we believe to be an unjustified criticism of Dummett’s pragmatist jus-
tification procedure. He claims that the procedure will not recognize the general
validity of modus ponens. He offers as a counterexample an application of modus
ponens where the argument for the horizontal premiss proceed from the premiss
of highest complexity in the whole argument. According to Prawitz, this particu-
lar instance of modus ponens will not be valid by Dummett’s definitions since it
violates the complexity requirement necessary to avoid circularity.

Now, with regard to Prawitz’s criticisms, we would like to observe, first, that
Dummett (1991, p. 284) consider explicitly an argument similar to Prawitz’s own
example. Second, the procedure can be shown to be well-founded even if some
critical subargument Π2 happen to have the same degree as the original argument
Π1 since, at most, the validity of Π2 will eventualy depend on the validity of
another argument Π3 of lower complexity after the premiss with highest degree
is taken as principal premiss. However, baffling as it is, Dummett (2007, p. 484)
seems to accept Prawitz’s criticisms when, in his reply, he writes: “I fully accept
Dag Prawitz’s correction of my handling of the notion of a valid argument when
elimination rules are taken as basic”.

Circularity is a danger when we consider some unusual elimination rules,
especially ones that do not respect Dummett’s complexity constraint. In most of
the cases, however, there are no problems. Thus, we take for granted that the
transformations eventually lower the degree of the critical subargument and move
on with the definitions leaving futher discussion of the circularity problem aside.

Definition 10. The complementation of an argument results from the replacement
of its conclusion A, if complex, by a valid canonical argument of which A is a
principal premiss (p. 285).

In a complementation of an argument Π1, when substituting a canonical argu-
ment Π2 for the conclusion, the resulting argument Π3 will have the same atomic
conclusion as Π2 and its premisses will be those of Π1 together with those of Π2.
There would be no loss of generality, in case the set E contains the usual ∨E, to
assume its conclusion to be atomic.

Sometimes, when complementing an argument we need additional premisses
to use as minor premisses of eliminations. When they are not derivable from
the original premisses of Π1, the minor premisses of ⊃I are taken as additional

61



premisses of the complementation. Also, Dummett (1991, p. 285–286) assumes
that the arguments for the vertical premisses C of an application of ∨E whose
major premiss is A∨B are derived by ⊃E with the help of additional premisses
A⊃C and B⊃C, where A and B are discharged as shown in the next example.

Example 5. The complementation of an argument from a sentence of the form
A∧B to conclusion A∨B must take the form shown below.

A∧B
A∨B

A⊃C [A]
C

B⊃C [B]
C

C

After complementation, the premisses of the argument will be A∧B, A⊃C and
B⊃C. There is no loss of generality if we assume C to be atomic. Basic rules can
be applied to C to obtain other atomic conclusions.

Definition 11. An arbitrary argument is valid if there is an effective method of
finding, for any complementation of it, a valid canonical argument with the same
premisses and conclusion (p. 286). And a canonical argument is valid if all its
critical subarguments are valid (p. 284)

Example 6. Since the theorems below are dedicated to show invalidity, we provide
a pragmatist justification for the inference of A⊃¬¬B from ¬¬(¬A∨B) as an
illustration. First, following Definition 10, we consider a complementation of the
argument.

¬¬(¬A∨B)À

A⊃¬¬B AÁ

¬¬B ¬BÂ

⊥

We indicate the premisses of the complementation by circled numbers “À”, “Á”,
“Â” and so on. By Definition 11, we have to obtain a valid canonical argument for
the same conclusion ⊥ from the same premisses. Any valid canonical argument,
by Definition 9, is proper. This means that at least one of its premisses is principal,
by Definition 8. We choose À to be the principal premiss of our valid canonical
argument and apply the corresponding elimination rule.

¬¬(¬A∨B)
A ¬B
¬(¬A∨B)

⊥
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By Definition 11, the canonical argument above would be valid provided its
critical subargument, surrounded in a box, is valid. We repeat the process for the
critical subargument.

AÀ ¬BÁ

¬(¬A∨B) ¬A∨BÂ

⊥

This time, we choose Â as the principal premiss of our valid canonical argument.

¬A∨B
[¬A]

A
¬¬A

⊥
[B] ¬B
⊥

⊥

The critical subargument from A to ¬¬A in the canonical argument above is obvi-
ously valid. And this concludes our example.

There are some noteworthy differences between the verificationist and the
pragmatist justification procedures. By comparison, the pragmatist procedure is
much more favorable to the view of deduction as proceeding from assumptions.
Indeed, the justification procedure does not change essentialy if we simply drop
the requirement for complementation to go all the way down to atomic conclu-
sions. Also, there is no need to explicitly consider basic rules. In addition, we
notice that, after the complementation, it rests on us the responsibility to show the
validity of the critical subargument in the pragmatist justification procedure. This
situation constrasts with the verificationist one, where supplementations, being
valid canonical arguments, already gives us valid critical subarguments.

In what follows, we shall evaluate the validity of the same rules discussed
in Section 3.2 with respect to the pragmatist justification procedure. In order to
remain completely faithful to Dummett’s definitions and also for the sake of uni-
formity, we maintain the assumption that the sentences are atomic in the following
theorems.

Theorem 3. Let ϕ and ψ be atomic sentences. Then, given any set B of production
rules, Peirce’s rule

(ϕ⊃ψ)⊃ϕ

ϕ

is not valid with respect to ⊃E.
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Proof. Since the the conclusion ϕ is an atomic sentence, there is nothing to com-
plement. In other words, an instance of Peirce’s rule is its own complementation.
Now, we need to ask whether is possible to obtain a valid canonical argument
from (ϕ⊃ψ)⊃ϕ to conclusion ϕ. Any valid canonical argument from premiss
(ϕ⊃ψ)⊃ϕ, being proper, will have that premiss as a major premiss of ⊃E (by
Definition 8).

ϕ⊃ψ (ϕ⊃ψ)⊃ϕ

ϕ

Here, the argument for ϕ⊃ψ is a critical subargument (again, by Definition 9).
At this point, Peirce’s rule would be valid only if we could infer ϕ⊃ψ from no
premisses. But this is not the case, since a complementation of ϕ⊃ψ, while
having ψ as conclusion, will require ϕ as minor premiss.

It seems that Dummett is safe from validating underivable rules in the context
of eliminations and the pragmatist justification procedure. Next, we see what the
pragmatist justification procedure says about Mints’ rule.

Theorem 4. Let ϕ, ψ and χ be atomic sentences. Then, given any set B of pro-
duction rules, Mints’ rule

(ϕ⊃ψ)⊃ (ϕ∨χ)

((ϕ⊃ψ)⊃ϕ)∨ ((ϕ⊃ψ)⊃χ)

is not valid with respect to ⊃E and ∨E.

Proof. Complementing Mint’s rule we have to replace its conclusion by a valid
canonical argument from ((ϕ⊃ψ)⊃ϕ)∨ ((ϕ⊃ψ)⊃χ), as principal premiss, to
atomic conclusions (by Definition 10). So, this argument will have ((ϕ⊃ψ)⊃ϕ)∨
((ϕ⊃ψ)⊃χ) as major premiss of ∨E. As illustrated in Example 5, we now have
an argument with an atomic conclusion, say ω, and premisses (ϕ⊃ψ)⊃ (ϕ∨χ),
((ϕ⊃ψ)⊃ϕ)⊃ω and ((ϕ⊃ψ)⊃χ)⊃ω.

(ϕ⊃ψ)⊃ (ϕ∨χ)

((ϕ⊃ψ)⊃ϕ)∨ ((ϕ⊃ψ)⊃χ)

((ϕ⊃ψ)⊃ϕ)⊃ω [(ϕ⊃ψ)⊃ϕ]
ω

((ϕ⊃ψ)⊃χ)⊃ω [(ϕ⊃ψ)⊃χ]
ω

ω

However, no matter which one of the premisses we take as principal, there is no
way to obtain a valid canonical argument for conclusion ω appealing only to the
same three premisses of the complementation.
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The sharp disagreement in the cases of Peirce’s rule and Mints’ rule is suffi-
cient to show an unbalance between the verificationist and the pragmatist justifica-
tion procedures with respect to the usual introduction and elimination rules for the
propositional logical constants. In what follows, we explore some consequences
of our investigations.
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Conclusion

As we saw on Chapter 1, the notion of harmony between the uses of an ex-
pression has to do with two particular aspects. First, the conditions for the correct
inference of sentences containing that expression. Second, what conclusion we
can draw from the assumption of a sentence containing that expression. Those
two aspects are harmonious if what we extract from a sentence is no more, nor
less, than what we require for the correct inference of that same sentence. This
relationship, when applying to rules governing the use of a single expression, are
called intrinsic harmony. On the other hand, total harmony refers to the balance
between the two aforementioned aspects when applied to a hole set of expressions,
any number of them may occur in a single sentence.

Acknowledging that the intrinsic harmony between the rules for each expres-
sion is insufficient, Dummett (1991, p. 287–288) devised the requirement of sta-
bility as a criterion to evaluate total harmony for the inferential practice deter-
mined by some set of rules governing the logical constants. According to this
criterion, if, given a set of introduction [elimination] rules, we get the same set
after applying both justification procedures, then stability holds.

The only restriction that Dummett (1991, p. 258) places upon introduction
and elimination rules is what he calls a complexity condition. For introduction
rules, this means that the premisses and discharged hypotheses of the rule must
be of lower complexity than the conclusion. On the other hand, Dummett (1991,
p. 283) requires elimination rules to have the conclusion, minor premisses and
discharged hypotheses with lower complexity than the major premiss.

In the previous chapter, we saw that, given ⊃I, the verificationist justification
procedure justifies Peirce’s rule as an additional elimination rule (besides the usual
modus ponens). Notwithstanding, Peirce’s rule is not justified by the pragmatist
justification procedure from⊃E. So, if we begin from a set E containing⊃E, after
applying both justification procedures, we get another set which contains at least
Peirce’s rule as an additional elimination rule. Therefore, stability fails.
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There are at least two possible ways to face the difficulty. We can accept the
overall justificatory procedures given by Dummett and look for different introduc-
tion and elimination rules which are stable with respect to those procedures. Or
we can try to reformulate Dummett’s procedures, guided by the objective of giv-
ing a better account of hypothetical reasoning. Throughout our discussions, we
have tentatively tryed to advance an alternative course along the second line. In
this respect, we shall comment briefly on some positive facts that emerged from
our investigations.

First, we call atention to the relative sucess of the pragmatist justification pro-
cedure. Besides seeming to work as expected, the pragmatist justification proce-
dure has a clear algorithmic application. Also, on reflection, it is easy to see how
to obtain, from the justification procedure with respect to the usual elimination
rules, a normal derivation in natural deduction. The converse construction, how-
ever, seems more complicated. Such constructions can be used to provide some
kind of semantical completeness and soundness arguments with respect to natural
deduction (if one is interested in such results). On the other hand, we can not see,
at present, a clear, general and algorithmic way to apply our corrected version of
the verificationist justification procedure. Nonetheless, we hope that our discus-
sion has thrown some light in the problems pertaining to the substitutional view of
open proofs. Lastly, we sincerely expect that further investigations on these topics
will prove fruitful enough for us to settle positively the question of stability.
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