
A Case Study of Automated Feature Location
Techniques for Industrial Cost Estimation

Ameer Armaly∗, John Klaczynski†, and Collin McMillan∗
∗Department of Computer Science and Engineering
University of Notre Dame, Notre Dame, IN 46615

Email: {aarmaly, cmc}@nd.edu
†SimVentions, Inc.

Fredericksburg, VA 22408
Email: jklaczynski@simventions.com

Abstract—We present a case study of feature location in
industry. We study two off-the-shelf feature location algorithms
for use as input to a software cost estimator. The feature location
algorithms that we studied map program requirements to one or
more function points. The cost estimator product, which is the
industrial context in which we study feature location, transforms
the list of function points into an estimate of the resources
necessary to implement that requirement. We chose the feature
location algorithms because they are simple to explain, deploy
and maintain as a project evolves and personnel rotate on and
off. We tested both feature location algorithms against a large
software system with a development lifespan of over 20 years. We
compared both algorithms by surveying our industrial partner
about the accuracy of the list of function points produced by
each algorithm. To provide further evidence, we compared both
algorithms against an open source benchmarking dataset. Finally,
we discuss the requirements of the industrial environment and
the ways in which it differs from the academic environment.
Our industrial partner elected to use Lucene combined with the
PageRank algorithm as their feature location algorithm because
it balanced accuracy with simplicity.

I. INTRODUCTION

Feature location is the task of mapping software require-
ments to the code that implements those requirements [1], [2].
Feature location is very important to the software development
process. A developer newly assigned to a project might use
feature location to find the code relating to a defect or change
request. Even an experienced developer might use feature
location to find the starting point for a defect or change request
because the relevant portion of the project has changed so
drastically that his previous understanding of it is no longer
applicable. Dedicated feature location algorithms that take into
account the structure and semantics of the project are more
useful than simple pattern matching.

Academic research has produced a wide variety of feature
location approaches (see section III). Static approaches ex-
amine the structure of the source code to find code relating
to a feature. Dynamic approaches examine the program as it
runs to trace the exact functions called by a feature. Textual
approaches employ textual analysis techniques to find the code
relating to a feature. Finally, hybrid approaches combine two
or more of the above approaches to produce a new approach.

In this paper, we study the application of feature location
in industry. The context of our study is a product for software
cost estimation. Software cost estimation is the task of ap-
proximating the time or monetary resources that a software
product will consume during development [3], [4]. In this
context, a cost estimator product takes the list of locations
in code returned by a feature location algorithm and translates
it into an estimation of the resources required to implement
that feature. The larger the number of affected locations, the
more complex the requirement. The cost estimator measures
the affected locations in terms of function points. The role
of the feature location component is to match requirement
text to a list of relevant function points to be passed to the
cost estimator. A function point is a location in a program
that represents some quantifiable amount of effort. Typically,
a function point is one of an “input”, “output”, “master file”,
“interface”, or “inquiry.” For example, an input function point
in a program might be an integer that is passed as an argument
to the program. That integer would be counted as a fixed
number of work units. A more complex input, such as a string,
would be counted as a higher number of work units. Function
points are a superior measure of software size than source
lines of code (SLOC) [5], [6], [7], [8]. We discuss function
points and cost estimation in greater detail in the Background
Section IV-A.

Our industrial partner is tasked with developing and main-
taining programs of varying size and complexity for the United
States Department of Defense. Choosing a feature location al-
gorithm for this environment requires balancing accuracy with
simplicity and ease-of-deployment. As programmers rotate on
and off the project they will need to be able to learn and use
the algorithm and explain its results to their superiors. The
algorithm should be able to deal with changing requirements
as it will be used to estimate the resources required for
proposed changes. The algorithm should be usable in the field
to estimate the effort required to alter a program currently
in use when unforeseen challenges or use cases arise. This
contrasts with the academic research environment where the
goal is to advance the state of the art by devising an algorithm
with better precision and recall. In Section VIII, we expand

on these differences between academic and industrial use of
feature location, and discuss our lessons learned.

We report on our experience adapting two feature location
algorithms to a large legacy United States Army system written
in Ada and having a development lifespan of over 20 years.
This system runs on specialized hardware, making dynamic
feature location algorithms impractical as they require col-
lecting execution traces every time the algorithm is to be
run. Therefore we chose two textual/static feature location ap-
proaches. The first algorithm used Lucene to map requirement
text to function points. The second algorithm used Lucene in
combination with the PageRank algorithm [9]. We present our
algorithms, our experiences using the algorithms including the
requirements and concerns of our industrial partner, and our
recommendations for others with similar needs. Put briefly,
we found that combining Lucene with PageRank provided
the best balance between good performance and simplicity of
deployment.

II. THE PROBLEM

We study the problem of applying feature location in an
industrial setting, in the context of a cost estimation product.
The cost estimation product is able to predict the expense of
different components in code. However, it has a drawback in
that it is not able to predict the expense of different features.
This drawback is serious for some organizations, notably the
U.S. Navy [10], because features can change rapidly over the
lifetime of a software system. Cost estimations on one version
of the software will not necessarily apply to the next.

The Navy currently relies on measures such as SLOC to
estimate the time and effort required for a project. SLOC
varies between languages, even languages in the same family
such as Java and C++. Estimating the SLOC that will be
introduced into a project by a new feature ultimately requires
a subject matter expert (SME). A SME is not only someone
who is familiar with the problem domain, but also someone
who is familiar with the code. A SME must manually analyze
the current state of the project and the new requirements
and estimate the number of SLOC that will be introduced.
The resulting estimates are varied and ultimately subjective.
Different SMEs can disagree on the amount of effort required
for a change. SMEs are likely to know certain components
of the project better than others. A SME might have an
outdated understanding of a particular component because it
has recently changed. This creates a risk for project managers
who are tasked with avoiding cost overruns while making sure
a program can fully implement its requirements.

Function points provide an alternative metric that is more
stable than SLOC. Calculating function points automatically
eliminates the need for SMEs to estimate the cost of features.
The number of function points changes more slowly as the
program evolves. This provides a more accurate picture of the
changes in the program’s complexity since it measures the
complexity of the changed code in terms of its interaction
with the rest of the program rather than strictly in terms of its

size. Function points are language-neutral, allowing accurate
complexity analysis of projects with components written in
multiple languages. Finally, function points provide a more
high-level description of the complexity of a program or a
feature. They quantify the interactions between the project
components and provide a stable metric of project size. Func-
tion points do not, however, provide a ready means of grouping
existing function points by feature, nor do they provide a
means of estimating how many new function points will be
introduced by a feature without the judgment of a SME.

Feature location has the potential to solve this problem.
Feature location techniques produce a mapping of features
to source code. Features can be described verbally or by the
actions taken by the user. In the first case, the text of a feature
description is analyzed to find areas in the code that match
keywords in the text. A simple case of this approach is using
the grep Unix utility to search for occurrances of the keywords
in the code. In the second case, the program is run while being
monitored and the code that runs in response to a user action
such as a mouse click is mapped to that feature. The mapping
produced by a feature location algorithm can be used to assign
costs to features: the cost of a feature is based on the cost of
the code to which the feature is mapped.

But there are many automated feature location techniques
available, and the performance of these techniques varies
in different domains. Some techniques are language-specific.
Other techniques require the user to run the program and exe-
cute the action that they want to map to code. Other techniques
are costly to implement either because they are intrinsically
complex or because they combine several approaches. In this
paper, we explore two of these techniques for the purpose
of cost estimation in Navy systems. Specifically, we seek to
map each requirement in a requirements document to a set
of function points. The function points can then be used by
the cost estimation product in order to estimate the time and
effort required for that feature. We compare the results of
each algorithm by having a SME rate the relevance of the top
ten function points returned by each algorithm. The results of
our study will improve the accuracy of the cost estimation by
helping to ensure that the feature location mapping is correct.
These results could also benefit designers of cost estimation
products in other domains.

III. RELATED WORK

Feature location techniques can be classified as static,
dynamic, textual, or hybrid. Biggerstaff et al. [1] formulated
the concept assignment problem and the first static feature
location approach. Chen and Rajlich [11] devised an approach
based on examining the Abstract System Dependence Graph
to find material relevant to a feature. Robillard [12] improves
upon this approach by grouping functions by specificity and
reenforcement. Marcus et al. [13] compared the available static
feature location techniques.

Dynamic approaches examine the execution of a program
to determine what parts are activated by a specific feature.
Software reconnaissance [14] compares two execution traces

of a program: one with the target feature active and one
with the target feature inactive. Eisenberg and De Volder [15]
improve upon this approach by scoring code elements on their
relevance to a feature rather than using binary judgements.
Wong emphet al. [16] examine execution slices of test cases
to determine the full scope of a feature in source code rather
than finding a likely place to start.

Marcus et al. [17] introduced textual analysis by applying
Latant Semantic Indexing (LSI) [18] to source code. This
technique was extended [19] to allow the user to mark certain
results as relevant or irrelevant to more accurately frame
the query. Grant et al. [20] applied Independent Component
Analysis (ICA) to feature location. Lukins et al. [21] use use
latent Dirichlet allocation (LDA) [22] to find methods that
relate to a bug.

Hybrid approaches combine the results of two or more
approaches to produce a more accurate final result than any of
their individual components. Promesir [23] combines LSI with
a scenario-based probabilistic ranking by using an affine trans-
formation. SITIR [24] uses LSI to filter the functions returned
by examining an execution trace. Revelle et al. [25] combine
SITIR with web mining to add dependency information and
achieve a better result. Dit et al. [26] used web mining and
execution traces to filter the results produced by LSI. Their
approach could use either the HITS [27] or PageRank [9]
algorithms.

Many feature location approaches must be manually tuned
to achieve the best result. Biggers et al. [28] examine five
configuration parameters and their impact on LDA systems.
Panichella et al. [29] automatically tune LDA for traceability
link recovery, feature location and software artifact labeling
using a genetic algorithm.

IV. BACKGROUND

In this section, we provide background on the function point
analysis that serves as context for our study. We also discuss
the two feature location algorithms that we test later. Note that
we discuss function points in detail because we use the feature
location techniques to match requirements text to function
points in source code (see Section IV-B for details).

A. Function Point Analysis

A function point is a location in software that represents a
measurable cost to create. Function points are calculated at the
borders of software components, e.g., among the classes in a
Java package or among the programs in a software system.
Different types of function points represent different costs. As
detailed in a well-cited study by Matson et al. [7], the typical
types of function points are:
• Inputs, which denote data that travel into a software

component, e.g., a parameter of a method inside a class
that is called by a method in a different class.

• Outputs, which denote processing or creating data that
then travel out of a component, e.g., a value that is
returned from a method in one class to a method in a
different class.

• Inquiries, which are identical to outputs except that no
alterations to the data occur, e.g., returning a value that is
read from a file but to which no modifications are made.

• Internal Master Files, which are sets of logically-related
data in a component.

• External Interface Files, which are internal master files
of other components upon which a component depends.

Each of the types of function points are categorized as low,
medium, or high complexity. Then, weights are applied to the
types and levels. For example, a low-complexity input might
be counted as one “work unit”, while a high complexity output
might equal five work units. The total count of work units is
governed by the formula.

F =

5∑
i=1

3∑
j=1

wij ∗ zij (1)

F is the work unit count, zij is the number of function
points of a particular type at one complexity level, and wij

is the weight assigned to the function points of that type
and complexity. For example, z13 would represent the number
of input function points at high complexity, and w22 would
be the weight assigned to output function points at medium
complexity.

Function points can be calculated manually or automatically.
The manual process involves a human expert who reads
requirements and design documentation in conjunction with
source code. The expert then marks each function point in
the documents, and computes the total function point count
at the end. Some experimental tools can calculate function
points based on design documents [30], though the state-of-
the-practice is that automated solutions focus on analyzing
source code. For example, the Object Management Group
procedures [31] emphasize analysis of code. The five function
point types and three complexity levels tend not to be different
for the automatic and manual approaches, though variations
have been proposed [32], [33].

Function points were designed in response to the use
of Source Lines of Code (SLOC) as measure of software
size [34]. The perception is that SLOC is not a dependable
metric because 1) it is highly dependent on language, and 2)
different lines can have very different costs even in the same
program [35]. A transition from SLOC to function points has
been proposed for decades [36], but a lack of standardization
and a large amount of legacy software have prevented some
organizations from adopting function points until recently. The
context of this paper is a transition from SLOC to function
points at the U.S. Navy [10].

B. Feature Location Techniques

Feature location is the task of matching descriptions of
the behavior of software to the source code implementation
of that behavior [2]. Feature location is an active research
area, and hundreds of variations, improvements, and domain-
specific enhancements have been proposed. These different
techniques can be placed on a spectrum from text-based to

Fig. 1. Overview of the context in which we evaluate the different feature location techniques. The feature location tool (area 2) is part of a product that
estimates the cost of features. The cost estimation itself is out of the scope of this paper; our goal is to choose the feature location tool for the product. Solid
boxes indicate components that we created for our approach. Dashed lines indicate intermediate data. Section V describes this figure in detail.

structural-based. Text-based refers to techniques that match the
keywords from natural language documentation to identifier
names and comments in source code. In contrast, structural-
based techniques use clues from the structure of the source
code such as function calls and inheritance. A majority of
techniques combine both textual and structural information [2].

The remainder of this section describes two techniques for
feature location that we study in this paper. These techniques
have been proposed and evaluated elsewhere, therefore we
provide only a high-level explanation of each. We chose these
techniques because they are widely-used in industry or widely-
cited in literature.

1) Lucene Comparison: Lucene is a Java implementation
of the Vector Space Model (VSM) used for calculating text
similarity - a pure text-based approach. VSM is a representa-
tion of the vocabulary of a set of documents. Every document
is represented as a vector. The contents of the vector are the
words that appear in the document. Each position in the vector
is a positive integer that indicates the number of times the
word appears. To be adapted as a feature location tool, the
“documents” are typically classes or methods in a software
program. The “words” are identifier names and keywords from
the comments in those classes or methods. Thus, the VSM
generated for source code is a set of vectors, where each
vector represents one class or method, and each position in
the vector is the count of occurrences of one identifier or
word from a comment. However, the counts of occurrences
in each vector are modified using the Term Frequency/Inverse
Document Frequency (tf/idf) formula.

tf =
n∑
k nk

(2)

In this formula, n is the count of occurrences of the word in
a document, and

∑
k nk is the total number of occurrences of

the word in all documents. The idea behind the tf/idf formula
is that words that occur frequently in many documents are
weighted less than words that occur in only a few documents.

When Lucene is used as a feature location technique, re-
quirements documents are compared to components of source

code. For example, a description of one requirement in a
program is matched to the classes or methods in the code. The
requirement is modeled as a vector of words, and the positions
in the vector are weighted using tf/idf. Then, the similarity
between the requirement and each class/method is calculated
using the cosine similarity between the requirement’s vector
representation and the vector representation of each class or
method. The classes/methods with the higher similarity values
are considered more likely to implement that requirement.

2) Lucene with PageRank: The second feature location
technique is a variation of the first. We apply the PageRank
algorithm [9] to produce weights for the function points in
a project. PageRank calculates the relative importance of an
entry in a set of documents which in this case are the functions
in the call graph of the project. For some function p, the initial
value is 1

N , where n is the number of functions in the project.
The algorithm then sums the PageRank values for all functions
that call p and adds them to the initial value. The algorithm
can be expressed as follows:

PR(p) =
1

N
+

∑
j∈I(p)

PR(j)

|O(j)|
(3)

N is the number of functions in the project, textiti(p) is
the number of functions that call the function p and o(p) is
the number of functions called by p. The algorithm must be
run until the values converge. We use PageRank to assign
weights to each function in the call graph of the project. The
weight of each function is then multiplied by the Lucene
score for any function point occuring in that function to
push more important functions higher in the list of search
results. PageRank has been used as a component of previous
feature location approaches. Portfolio [37] is a code search
engine that outperforms Google Code Search at both finding
relevant functions and finding use cases for those functions.
Dit et al. [26] combined PageRank with dynamic analysis
and information retrieval to produce a feature location model
that outperformed its component techniques.

V. THE CONTEXT OF THE CASE STUDY

The context of our study is a software cost estimation
product. Figure 1 portrays this context. While the specifics of
the cost estimation technique are proprietary and beyond the
scope of this paper, we provide an overview in this section to
explain our usage scenario of the feature location tools. Our
study results and recommendations are based on this scenario.

The inputs to the product are 1) the source code, and 2) the
requirements documents associated with a software program.
The source code is written in Ada. The requirements must be
written in English, and in a format that delineates different
feature descriptions (e.g., one feature description per line,
or per section header). The output of the product is a cost
associated with each feature. Changes to the requirements
documents, such as the addition of a feature, result in a cost
based on the feature costs.

The internals of the product work generally as follows. A
function point extractor process the source code (Figure 1,
area 1) to determine the function points in the program. This
extractor is based on the Object Management Group standard
for automated function point analysis [31]. The function points
it locates fall into the categories laid out in Section IV-A. For
the version of the product in our study:
• Inputs are parameters to function calls into a class.
• Outputs are return values from function calls into a class.
• Inquiries are not distinguished from outputs (e.g., return

values were not distinguished as modified).
• Internal Master Files are all source files that contained

functions.
• External Interface Files are not included because there

were none defined by the application.
All weights are equal to one. That is, the version of the

product in our study does not distinguish among low, medium,
or high complexity function points.

The feature location tool reads the requirements documents
(Figure 1, area 2) and matches them to function points
(Figure 1, area 3). Note that the feature location tool actually
maps feature descriptions to functions (see Section VI-B).
We translate the functions to the function points by giving
the similarity value for the function to the function points in
that function. For example, consider a result from the feature
location tool where feature A is similar to function F with
a value of 0.89. If function F has two parameters that are
function points, then the product returns those function points
as having a similarity value of 0.89 to feature A. While
it is typical in academic research to connect requirements
to functions or classes, our industrial partner needed the
connections to function points for purposes of cost estimation.
This need meant that we had to translate connections from
functions to function points.

No text preprocessing is performed by the product for the
function points or the documentation. But, each feature loca-
tion technique may perform its own preprocessing, including
stemming, splitting, and stop word removal. We use the default
configuration of the tools as described in the related work, or

as available when downloaded.
The cost estimator uses a statistical model to predict the

cost of each function point (Figure 1, area 4). This procedure
is similar to the state-of-the-art in cost estimation (see Sec-
tion III), where the statistical model is created from records
of previous experience. Function points (and combinations of
function points) are known to have taken a concrete amount of
time, or to have required a specific number of programmers,
on earlier projects. The cost estimator links statistical averages
about these function points to the function points for each
feature. Then, the cost of each feature is estimated based on
these averages (Figure 1, area 5).

VI. CASE STUDY DESIGN

This section describes the design of our case study, includ-
ing our research questions, our methodology for answering
those questions, and other details about the study environment.

A. Research Questions

Our research objective is to determine which feature lo-
cation technique should be used in our industrial context of
cost estimation. Performance is a key factor, but ease-of-use
is also an important practical concern for deployment. Any
increase in complexity of the solution must be justified by
a worthwhile increase in performance. As such, we pose the
following Research Questions (RQs):

RQ1 Which of the two feature location techniques has the
highest performance, as perceived by the industrial
partner?

RQ2 Which of the two feature location techniques has the
highest performance when evaluated against an open
source benchmarking data set?

RQ3 Which of the two feature location techniques has
the lowest cost to implement, as perceived by the
industrial partner?

RQ4 Which of the two feature location techniques
achieves the best balance between performance and
cost?

The rationale behind RQ1 is that quality of the results will
vary for each of the feature location techniques, and that the
industrial partner will observe these variations. The degree of
these variations will be a key factor in the decision to deploy
the techniques. Therefore, we collect information about the
quality of the results from the techniques. To supplement these
observations we test both techniques against an independent
mapping of requirements to functions in RQ2. Likewise, cost-
to-implement is a factor in the decision to use a technique, so
we determine the industrial partner’s perceptions of this cost
through RQ3. Note that cost-to-implement may depend on
internals of the feature location technique, such as whether
the technique requires structural information from the source
code. This structural information may, for example, be cost-
prohibitive to obtain. Cost-to-implement must be balanced
with performance to form a decision about which technique
to use. We study this balance in RQ4.

B. Methodology

The methodology of our study is to 1) implement the two
techniques in the context of the cost estimation tool, 2) test
both techniques against an benchmarking dataset and 3) to
survey the industrial partner based on the experience using
these different techniques. Note that since this study is a
component of an ongoing commercial project, our survey
must not be intrusive to the industrial partner, and it must
not slow development. Thus, a standard cross-validation user
study involving dozens of programmers is not viable. Instead,
we design the survey such that the industrial partner is blind
to the techniques he evaluates, to avoid a potential bias.

The survey design for RQ1 is as follows. First, we execute
each feature location technique to obtain a top-ten list of
function points in the source code that map to each feature
described as text in the requirements documents. Next, we
built an online survey that presents a feature description to the
industrial partner, along with function points from the source
code. The function points are the same function points in the
top-ten lists from the feature location tools, but the survey
does not indicate which function point was recommended by
which technique. The survey then allows the industrial partner
to select whether or not the function is relevant to the feature.

The survey continues showing feature descriptions and
function points to the partner until all features are evaluated.
However, due to time constraints we ask the partner to exit
the survey after 30 minutes.

We answered RQ2 by testing both algorithms against a
mapping of requirements to functions for an open source
benchmarking dataset. The dataset does not map requirements
to function points so we are forced to map requirements to
functions rather than function points in this evaluation. The
requirements were taken from the JavaScript specification. We
ran both algorithms on all requirements in the specification.
For each requirement we extracted a set of relevant functions.
Each function had a score that was returned by Lucene. We
normalized this score by dividing the score by the score of
the highest-scoring function. We filtered all functions with a
normalized score of less than 0.5. The minimum score is ad-
justable. We use SRCML [38] to creat an XML representation
of the source tree. We then parsed the SRCML representation
to extract individual functions and to generate the call graph
for use by PageRank.

We used a custom Lucene analyzer for the requirement text
and another analyzer for the java source code. Both analyzers
filtered whitespace and punctuation tokens. Both analyzers
also filtered out english stop words such “a” and “the”. The
source code analyzer filtered out Java stop words such as “int”
and “if.” The requirement text analyzer did not. We measured
two metrics: precision and recall. Precision is the percentage
of correct functions returned by the algorithm. Recall is the
percentage of all correct functions for the requirement that the
algorithm returned. We filtered out empty requirements from
both the benchmarking dataset and the returned dataset. Empty
requirements include sections that have no text themselves but

have several subsections.
We use a brief qualitative interview approach [39] to answer

RQ3. We ask the industrial partner questions related to the
inputs of the feature location techniques (e.g., textual or struc-
tural data), to determine the perceived difficulty of obtaining
those inputs for the typical use case of the cost estimation
tool. In addition, we ask questions related to the difficulty of
the specific tools. For reproducibility, we provide the exact
list of questions in Table I. However, note that we used these
questions as a starting point for conversation, and do not limit
our qualitative results to specific answers to these questions.

The chief evidence to answer RQ4 is the decision that the
industrial partner makes regarding the feature location tech-
nique. We provide discussion and recommendations related to
this decision based on the qualitative interview process.

C. Subject Application

The subject application of the survey is a control program
for an aviation training simulator. The program is written in
Ada. It includes over 200K SLOC in 253 files and over 3000
functions. The software has a development and usage history
spanning over 20 years. The system is not classified, but is
closed-source and confidential.

The subject application for the benchmarking dataset is
the open-source Rhino JavaScript engine 1, developed by
the Mozilla Foundation. Rhino is is typically used to add
JavaScript functionality to applications and is the default
JavaScript engine for J2SE 6. It is written in Java and contains
over 6K SLOC in over 1300 functions and 129 files.

D. Threats to Validity

Like any study, this work contains possible threats to
validity. One threat is the subject application. Different results
are possible on different systems. We attempted to mitigate this
threat by using a representative example of the programs for
which the cost estimation tool will be used. Unfortunately, due
to legal and practical constraints, we were unable to conduct
the study on additional subjects. However, as research by our
industrial partner continues, we believe we can verify our
finding against additional subjects.

Another threat is that we only used one benchmarking
dataset to support our conclusions. The dataset mapped re-
quirements to functions rather than function points. Other

1https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino

TABLE I
SURVEY QUESTIONS

Question
1 What is your opinion on the difficulty extracting, and availability of,

text data in the source code?
2 Would you expect to be able to extract structural information for all

source code you use as input to the cost estimator?
3 Would you expect to be able to compile all that source code?
4 Did you encounter any unexpected challenges in building the text

corpus for the techniques?
5 Given what you know now, which feature location technique do you

expect to use for the cost estimator?

datasets or a dataset that mapped requirements to function
points could yield different results. We used a statically-
generated call graph when applying PageRank to this dataset.
This call graph is potentially incomplete. It may not contain
indirect function calls that come from outside the program
itself. The number of calls from one method to another
may be governed by the nature of the input supplied to the
program. We discuss indirect function calls in more detail in
section VIII-C.

Finally, only one expert from the industrial partner was
able to participate in the study. Other experts may have
different conclusions. Nevertheless, our study depicts an actual
scenario, and the reality is that one expert may be relied upon
to make key decisions. Our caveat is that the results of our
study may vary depending on setting; the intent of this study is
to provide an example of one experience using feature location
in practice.

VII. EVALUATION RESULTS

In this section, we present the results of the evaluation of
our approach.

A. RQ1: Relevance of Function Points

We found statistically-significant evidence that the combina-
tion of Lucene and PageRank produced more relevant function
points than Lucene alone. The average relevance score for
the combination of Lucene and PageRank was 2.7 where as
the average score for Lucene alone was 2.37. To determine
statistical significance, we used the Mann-Whitney test by
posing hypothesis H1:
H1 The difference between the relevance of the results

produced by combining Lucene with PageRank and
using Lucene alone is not statistically significant.

We rejected this hypothesis based on the results of the
Mann-Whitney test shown in Table III. An α value of 0.05
means that the difference between the samples was statistically
significant; the results produced by combining Lucene and
PageRank were more relevant by a statistically significant
margin.

B. RQ2: Benchmarking Dataset

We found that combining Lucene with PageRank increased
precision while decreasing recall when compared to Lucene
alone on the independent data set. Lucene alone returned a
precision of 53.5% and a recall of 0.8%. Lucene with PageR-
ank returned a precision of 75.5% and a recall of 0.42%. To
shed more light on why recall is low we reran the experiment
with multiple minimum confidence scores between 0.5 and 0
to determine how the relevant functions were distributed. The
following table hosws the results.

Recall increases as the minimum score decreases, but the
largest increase occurs between minimum scores of 0.05 and
0. This suggests that many of the relevant functions score very
poorly with Lucene. Applying PageRank promotes certain
relevant functions but leaves many behind.

C. RQ3: Cost of Implementation

We found that both techniques were easily deployable by the
industrial partner. The industrial partner believed that the most
difficult aspect was placing the extracted text data in context,
e.g., determining if a package is a utility package as opposed
to project-specific code. The industrial partner believed both
techniques could be generalized to a wide range of projects.

D. RQ4: Cost / Performance Balance

We found that the combination of Lucene and PageRank
gave the most relevant results while imposing minimal over-
head. The PageRank algorithm can be run once and the data
reloaded as many times as necessary. The industrial partner
chose to use this combination for cost estimation.

VIII. CONCLUSIONS & LESSONS LEARNED

In this section we discuss the distinct requirements as well
as potential pitfalls of using an approach of this kind in an
industrial as opposed to an academic environment.

A. Industrial Requirements

We identified four key industrial requirements for feature
location approaches separate from the usual requirements
present in an academic research setting. We derive these
requirements from our observations and discussions with our
industrial partner. This list is not exhaustive but will hopefully
provide guidance for others seeking to use feature location in
industry.

It was not practical for us to use dynamic feature location
approaches for this project. These approaches depend on

TABLE II
RESULTS FOR A RANGE OF MINIMUM SCORE VALUES.

Method Minimum Score Precision Recall
Lucene 0.50 53.56% 0.88%
Lucene+PageRank 0.50 75.24% 0.43%
Lucene 0.45 52.21% 1.12%
Lucene+PageRank 0.45 71.25% 0.52%
Lucene 0.40 49.89% 1.46%
Lucene+PageRank 0.40 67.92% 0.62%
Lucene 0.35 47.56% 1.91%
Lucene+PageRank 0.35 64.01% 0.79%
Lucene 0.30 46.48% 2.56%
Lucene+PageRank 0.30 59.31% 1.04%
Lucene 0.25 44.65% 3.41%
Lucene+PageRank 0.25 54.44% 1.40%
Lucene 0.20 41.84% 4.62%
Lucene+PageRank 0.20 50.71% 2.01%
Lucene 0.15 39.63% 6.50%
Lucene+PageRank 0.15 46.68% 3.03%
Lucene 0.10 37.32% 9.65%
Lucene+PageRank 0.10 42.88% 4.96%
Lucene 0.05 33.60% 15.88%
Lucene+PageRank 0.05 38.10% 9.54%
Lucene 0.00 28.44% 43.42%
Lucene+PageRank 0.00 28.38% 43.32%

TABLE III
STATISTICAL SUMMARY. MANN-WHITNEY TEST VALUES ARE U , Uexpt , AND Uvari . DECISION CRITERIA ARE Z , Zcrit , AND p.

RQ Metric H Approach Samples x̃ µ Vari. U Uexpt Uvari Z Zcrit p

RQ1 Relevance H1
Lucene with Page Rank 99 3.000 2.707 1.373 5163 4455 129005 1.971 1.645 0.024Lucene 90 2.000 2.378 1.788

running the program and comparing execution traces to de-
termine which code executes when a given feature is enabled.
These approaches are complex because they rely on examining
a running program which often requires support from the
underlying hardware. In this case the underlying hardware
was a twenty-year-old aircraft simulator for which we do not
have documentation. Moreover, the need to regularly rerun
the feature location algorithm as the project changes and new
requirements are proposed makes it impractical to have a
dedicated engineer constantly running program traces on the
aircraft simulator Therefore we were restricted to textual and
static feature location approaches..

It should be possible to explain the algorithm to new
programmers who are responsible for using it and reporting on
its results. Since programmers rotate in and out of industrial
positions this algorithm will likely be in place long after the
people who chose to use it have left. It should be possible to
explain the algorithm to project managers who will use the
data returned by the algorithm to prioritize work and make
other decisions relating to the project. Finally, auditors and
investigators who are omnipresent in the public sector will
need to be able to understand the algorithms and the decisions
resulting from its output in order to assess whether those
decisions were correct. This does not mean that industrial
environments are constrained to only the most basic algorithms
but it does mean that potential users should be aware that they
will need to explain the approach on a regular basis.

The use case for our approach involves estimating the
complexity of new requirements and changes to proposed or
existing requirements rather than simply dividing the program
up into logical components. This means that the algorithm
must run in a timely manner as it will be run often. It is
acceptable to obtain a “worse” result if it means that the
approach runs faster. This requirement also means that the
algorithm must not need to be manually tuned as the project
requirements change.

As time goes on and a project evolves certain components
may be written in different languages. Occasionally the whole
project will be rewritten to take advantage of a new language
or environment. The algorithm our industrial partner chose
needs only a call graph to be able to generate scores. It does
not need to run the program and examine it while running. It
does not need to parse the source code beyond generating a
call graph and extracting the bodies of functions. It also gains
an advantage in portability from being written in JAVA; it can
be applied in any environment with a JVM. This is not to say
that our approach can be run on any environment as-is, only
that it can be done with a small of effort. Much of the work
can be done by reusing other tools or code.

B. Precision and Recall

The algorithms we tested returned high precision but very
low recall when run against the open source benchmarking
dataset. This means that a large percentage of the results
were relevant to the requirement, but that there were a large
number of relevant results that our approach did not return.
This effect could be partially attributed to issues with the
call graph such as indirection and outside function calls not
being recognized. Another possibility is that the functions in
the program are not similar to the requirement text because
the functions concern the internal operations of the program
whereas the requirements document we use is a specification
separate from the program and produced by a different party.

Existing research places more importance on recall than
precision [40], [41]. In spite of these issues our industrial
partner chose to use the algorithm with the higher precision
and lower recall. This algorithm is still being used for feature
location today. The reason is that the cost estimates that
will ultimately result from these algorithms will be used to
create budgets and to allocate resources for future projects.
Resources can include specialists such as programmers or
testers as well as specialized equipment for manipulating or
testing certain features of a project. These resources tend
to be more expensive to allocate than programmers in the
open market or off-the-shelf equipment. In this context every
resource allocation must be justifiable as resulting from correct
data, meaning that it is more important for the function points
returned by an algorithm to be correct than it is for the
algorithm to return all the correct function points.

These issues carry additional implications when designing
programs for the public sector. The firm that produces pro-
grams for use by government agencies cannot overestimate
the cost of a proposed project. Doing so can result in their bid
being rejected as too expensive when the correct bid would
have been accepted. Over-allocating resources to a government
project can result in allegations of waste and mismanagement
of funds, resulting in investigations where the contractor must
account for every component of their estimate. Therefore
it is even more important that cost estimates be based on
correct function points rather than the estimate containing
every correct function point.

It is possible that these results do not reflect how many of
the relevant functions our approach returned in the context of
programs produced by our industrial partner. The requirements
for these programs are much more specific as they describe the
exact operation of the program. The requirements use much
of the same terminology for buttons and screen names that
appears in the source code. We are unable to present a verbatim
example from the industrial dataset as the requirements are

sensitive, but consider the following hypothetical requirement
that contains a similar amount of detail and format:

The “A” key shall invoke do_add. If
play_sounds is set to true then it shall
also send PLAY_SOUND_ADD to the asynchronous
event service. If logging_flag is set to true then
it shall send KEY_A followed by CALL_DO_ADD
to the logging service.

Now consider this requirement taken from the JavaScript
specification:

15.5.4.16 String.prototype.toLowerCase () If
this object is not already a string, it is converted to
a string. The characters in that string are converted
one by one to lower case. The result is a string value,
not a String object.

The characters are converted one by one. The
result of each conversion is the original character,
unless that character has a Unicode lowercase equiv-
alent, in which case the lowercase equivalent is used
instead.

The requirement is not as tightly bound to the source code as
the previous hypothetical requirement. JavaScript requirements
may contain pseudocode that specifies the exact behavior
of a JavaScript library method but it does not require the
implementation to use the same naming conventions as the
pseudocode.

C. Limitations

We identified four limitations of our approach that could
affect its accuracy or keep it from being easily generalized to
all programming languages and environments. The first is that
utility packages can inflate cost estimates. Utility packages
contain code that is not relevant to the project domain. They
tend to appear near the top of function point lists because they
are called by all parts of the program. To ensure that utility
packages are not inflating the number of function points, the
user must either remove them from the call graph or exclude
them from the returned list of function points.

Our implementation has no way of detecting deprecated
code without either support from the language such as the
“@depricated” annotation in Java or feedback from the user.
This could present a problem if the function point list is
used to inform developers that are implementing new features.
A developer could inadvertently implement a change request
using deprecated code since that was what appeared in the
function point list. Alternatively, deprecated code could inflate
the function point list if certain function points use new code
and other function points use deprecated code. The function
point list would then have multiple functions for the same task.

The algorithms we chose cannot detect indirect function
calls such as those made through function pointers or anony-
mous functions. Indirect function calls were not part of the
Ada standard used by the industrial partner, so we did not

add support for them. Indirect function calls are common to
programs with a plugin architecture where plugins register
themselves by passing pointers to their component functions.
The component functions are then called by the main program
when necessary. The call graph builder must recognize that a
library is being loaded from runtime and that certain functions
are being requested. It must then find the appropriate source
code that maps to that library and combine that call graph with
the call graph of the main application.

Indirect function calls are also common to libraries that
use callback functions. Examples include event handlers for
GUI libraries such as Java Swing and entry points for new
threads in libraries such as Pthreads. In these cases, a function
pointer is passed to be executed by the library at some later
time. Unless the source code of the library is available, the
call graph builder cannot know exactly which function will
call the function pointer; it could be the function to which it
was passed or some other function. In cases where the source
code to the library is unavailable, the user can assume that the
function pointer will be called by the function to which it is
passed. This assumption should not affect the complexity of
the project and the resulting cost estimates. A call graph that
does not contain indirect function calls will be incomplete. The
function point list will also be incomplete and any PageRank
scores will be invalid.

Finally, our implementation is unable to generate a call
graph of projects that are made up of components written
in multiple programming languages without extra effort. A
builder must first be built to create a call graph for the new
language, but it must also be built to recognize how the
two languages interact. A simple case involves recognizing
functions defined as extern ”C” to allow C++ to call functions
written in C. Another simple case involves calling assembly
routines from C. Both of these cases allow the caller to simply
address the function by name and the call graph is complete
when the two call graphs are merged. More complex cases
such as the Java Native Interface (JNI) load the binary version
of the component at run time and call methods on an object
that calls the target function inside the binary component.
The call graph builder must first identify these calls and then
must locate the callee in the call graph of the containing
component. This way, the call graph is guaranteed to point to
the appropriate function in cases where multiple components
have a function with the same name.

Future work will focus on mitigating these risks. One area
of future work is enabling the user to exclude deprecated and
utility packages from function point analysis. We will first
allow the user to manually select packages, but will eventually
progress to suggesting packages to be excluded. Another area
of work is the detection of indirect function calls where the
particular language allows it. This will involve the detection
not only of indirect function calls from within the program, but
detection of function pointers being passed to outside libraries
where it can be inferred that the outside library will then
execute the function.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation Graduate Research Fellowship Program
under Grant No. DGE-1313583. This work was also supported
by the National Science Foundation CAREER Award under
Grant No. CCF-1452959. This work was also supported by
the United States Navy Small Business Innovation Research
(SBIR) program under topic N141-055. Any opinions, find-
ings, and conclusions expressed herein are the authors’, and
do not necessarily reflect those of the sponsors. The authors
would like to thank SimVentions for their collaboration and
for providing a subject matter expert for our user study.

REFERENCES

[1] T. J. Biggerstaff, B. G. Mitbander, and D. E. Webster, “Program
understanding and the concept assignment problem,” Communications
of the ACM, vol. 37, no. 5, pp. 72–82, 1994.

[2] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature location
in source code: a taxonomy and survey,” Journal of Software: Evolution
and Process, vol. 25, no. 1, pp. 53–95, 2013.

[3] F. Heemstra, “Software cost estimation,” Information and Software
Technology, vol. 34, no. 10, pp. 627 – 639, 1992.

[4] T. Lee, T. Gu, and J. Baik, “Mnd-scemp: an empirical study of a
software cost estimation modeling process in the defense domain,”
Empirical Software Engineering, vol. 19, no. 1, pp. 213–240, 2014.

[5] A. J. Albrecht and J. E. Gaffney, “Software function, source lines of
code, and development effort prediction: a software science validation,”
Software Engineering, IEEE Transactions on, no. 6, pp. 639–648, 1983.

[6] C. F. Kemerer, “Reliability of function points measurement: a field
experiment,” Communications of the ACM, vol. 36, no. 2, pp. 85–97,
1993.

[7] J. E. Matson, B. E. Barrett, and J. M. Mellichamp, “Software devel-
opment cost estimation using function points,” Software Engineering,
IEEE Transactions on, vol. 20, no. 4, pp. 275–287, 1994.

[8] Y. Ahn, J. Suh, S. Kim, and H. Kim, “The software maintenance project
effort estimation model based on function points,” Journal of Software
maintenance and evolution: Research and practice, vol. 15, no. 2, pp.
71–85, 2003.

[9] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web
search engine,” in Proceedings of the Seventh International Conference
on World Wide Web 7, ser. WWW7. Amsterdam, The Netherlands,
The Netherlands: Elsevier Science Publishers B. V., 1998, pp. 107–117.
[Online]. Available: http://dl.acm.org/citation.cfm?id=297805.297827

[10] “(sbir) navy - automated function point analysis,” http://www.navysbir.
com/n14 1/N141-055.htm, accessed: 2014-09-18.

[11] K. Chen and V. Rajlich, “Case study of feature location using depen-
dence graph.” in IWPC. Citeseer, 2000, p. 241.

[12] M. P. Robillard, “Automatic generation of suggestions for program
investigation,” in ACM SIGSOFT Software Engineering Notes, vol. 30,
no. 5. ACM, 2005, pp. 11–20.

[13] A. Marcus, V. Rajlich, J. Buchta, M. Petrenko, and A. Sergeyev, “Static
techniques for concept location in object-oriented code,” in Program
Comprehension, 2005. IWPC 2005. Proceedings. 13th International
Workshop on. IEEE, 2005, pp. 33–42.

[14] N. Wilde and M. C. Scully, “Software reconnaissance: mapping program
features to code,” Journal of Software Maintenance: Research and
Practice, vol. 7, no. 1, pp. 49–62, 1995.

[15] A. D. Eisenberg and K. De Volder, “Dynamic feature traces: Finding
features in unfamiliar code,” in 21st ICSM’05. IEEE, 2005, pp. 337–
346.

[16] W. E. Wong, S. S. Gokhale, and J. R. Horgan, “Quantifying the closeness
between program components and features,” Journal of Systems and
Software, vol. 54, no. 2, pp. 87–98, 2000.

[17] A. Marcus, A. Sergeyev, V. Rajlich, J. Maletic et al., “An information
retrieval approach to concept location in source code,” in 11th WCRE,
2004. IEEE, 2004, pp. 214–223.

[18] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and
R. A. Harshman, “Indexing by latent semantic analysis,” JAsIs, vol. 41,
no. 6, pp. 391–407, 1990.

[19] G. Gay, S. Haiduc, A. Marcus, and T. Menzies, “On the use of relevance
feedback in ir-based concept location,” in Software Maintenance, 2009.
ICSM 2009. IEEE International Conference on. IEEE, 2009, pp. 351–
360.

[20] S. Grant, J. R. Cordy, and D. Skillicorn, “Automated concept location
using independent component analysis,” in 15th WCRA, 2008. IEEE,
2008, pp. 138–142.

[21] S. K. Lukins, N. A. Kraft, and L. H. Etzkorn, “Bug localization
using latent dirichlet allocation,” Information and Software Technology,
vol. 52, no. 9, pp. 972–990, 2010.

[22] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
the Journal of machine Learning research, vol. 3, pp. 993–1022, 2003.

[23] D. Poshyvanyk, Y.-G. Gueheneuc, A. Marcus, G. Antoniol, and V. C.
Rajlich, “Feature location using probabilistic ranking of methods based
on execution scenarios and information retrieval,” Software Engineering,
IEEE Transactions on, vol. 33, no. 6, pp. 420–432, 2007.

[24] D. Liu, A. Marcus, D. Poshyvanyk, and V. Rajlich, “Feature location via
information retrieval based filtering of a single scenario execution trace,”
in Proceedings of the twenty-second IEEE/ACM international conference
on Automated software engineering. ACM, 2007, pp. 234–243.

[25] M. Revelle, B. Dit, and D. Poshyvanyk, “Using data fusion and web
mining to support feature location in software,” in Program Compre-
hension (ICPC), 2010 IEEE 18th International Conference on. IEEE,
2010, pp. 14–23.

[26] B. Dit, M. Revelle, and D. Poshyvanyk, “Integrating information
retrieval, execution and link analysis algorithms to improve feature
location in software,” Empirical Software Engineering, vol. 18, no. 2,
pp. 277–309, 2013.

[27] J. M. Kleinberg, “Authoritative sources in a hyperlinked environment,”
Journal of the ACM (JACM), vol. 46, no. 5, pp. 604–632, 1999.

[28] L. R. Biggers, C. Bocovich, R. Capshaw, B. P. Eddy, L. H. Etzkorn,
and N. A. Kraft, “Configuring latent dirichlet allocation based feature
location,” Empirical Software Engineering, vol. 19, no. 3, pp. 465–500,
2014.

[29] A. Panichella, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, and
A. De Lucia, “How to effectively use topic models for software engi-
neering tasks? an approach based on genetic algorithms,” in Proceedings
of the 2013 International Conference on Software Engineering. IEEE
Press, 2013, pp. 522–531.

[30] A. Živkovič, I. Rozman, and M. Heričko, “Automated software size
estimation based on function points using uml models,” Information
and Software Technology, vol. 47, no. 13, pp. 881–890, 2005.

[31] “OMG Automated Function Points, v1.0,” Object Management Group,
Tech. Rep., Jan. 2014. [Online]. Available: http://www.omg.org/spec/
AFP/1.0/

[32] G. R. Finnie, G. E. Wittig, and J.-M. Desharnais, “A comparison of
software effort estimation techniques: using function points with neural
networks, case-based reasoning and regression models,” Journal of
Systems and Software, vol. 39, no. 3, pp. 281–289, 1997.

[33] G. Caldiera, G. Antoniol, R. Fiutem, and C. Lokan, “Definition and
experimental evaluation of function points for object-oriented systems,”
in Software Metrics Symposium, 1998. Metrics 1998. Proceedings. Fifth
International. IEEE, 1998, pp. 167–178.

[34] S. Furey, “Why we should use function points [software metrics],”
Software, IEEE, vol. 14, no. 2, pp. 28–30, 1997.

[35] C. Jones, Estimating software costs: Bringing realism to estimating.
McGraw-Hill Companies New York, 2007.

[36] ——, “Backfiring: Converting lines of code to function points,” Com-
puter, vol. 28, no. 11, pp. 87–88, 1995.

[37] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu,
“Portfolio: finding relevant functions and their usage,” in Software
Engineering (ICSE), 2011 33rd International Conference on. IEEE,
2011, pp. 111–120.

[38] J. I. Maletic, M. L. Collard, and A. Marcus, “Source code files as
structured documents,” in Program Comprehension, 2002. Proceedings.
10th International Workshop on. IEEE, 2002, pp. 289–292.

[39] V. R. Basili and D. M. Weiss, “A methodology for collecting valid
software engineering data,” Software Engineering, IEEE Transactions
on, no. 6, pp. 728–738, 1984.

[40] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: bringing order to the web.” 1999.

[41] S. Banerjee and A. Lavie, “Meteor: An automatic metric for mt evalua-
tion with improved correlation with human judgments,” in Proceedings
of StatMT, 2007, pp. 228–231.

