
An Empirical Study of the Effects of Expert
Knowledge on Bug Reports

Da Huo∗, Tao Ding†, Collin McMillan∗, and Malcom Gethers†
∗Department of Computer Science and Engineering
University of Notre Dame, Notre Dame, IN 46545

Email: {dhuo, cmc}@nd.edu
†Information Systems Department

University of Maryland Baltimore County, Baltimore, MD 21250
Email: {tding1027, mgethers}@umbc.edu

Abstract—Bug reports are crucial software artifacts for both
software maintenance researchers and practitioners. A typical
use of bug reports by researchers is to evaluate automated
software maintenance tools: a large repository of reports is used
as input for a tool, and metrics are calculated from the tool’s
output. But this process is quite different from practitioners,
who distinguish between reports written by experts such as
programmers, and reports written by non-experts such as users.
Practitioners recognize that the content of a bug report depends
on its author’s expert knowledge. In this paper, we present an
empirical study of the textual difference between bug reports
written by experts and non-experts. We find that a significance
difference exists, and that this difference has a significant impact
on the results from a state-of-the-art feature location tool. Our
recommendation is that researchers evaluate maintenance tools
using different sets of bug reports for experts and non-experts.

I. INTRODUCTION
A bug report is a description of unwanted software be-

havior. Bug reports are one of the most important artifacts in
software maintenance. Software engineering practitioners use
them to diagnose, locate, and repair software defects [1], and
a recent study at Microsoft found that between 5% and 15%
of a typical programmer’s time is spent reproducing unwanted
behavior described in bug reports [2]. Meanwhile, bug reports
are used in many corners of software maintenance research,
including developer recommendation [3], [4], change impact
analysis [5], feature location [6], [7], defect localization [8],
and tracability [9]. Effective software maintenance procedures
almost always rely on effective communication of problems via
bug reports [10], [11], [12]; in research, they are so ubiquitous
that their presence is often taken for granted.

But the source of bug reports is often obscure. Bug reports
may be written by users of software who experience failures
in that software, to communicate those failures to maintainers.
Or, bug reports may be written by the software’s own pro-
grammers, as a way of recording and monitoring the progress
of repairing defects. What distinguishes these reports is that
some reporters, such as the software’s programmers, have a
high degree of expert knowledge about the software, while
other reporters have almost none. Different studies have shown
that people with this expert knowledge understand software
behavior differently than people without it [13], [14], [15],
[16]. But crucially, experts do not necessarily write “better”
bug reports than non-experts; reports from experts and non-
experts provide complementary information [17], [18]. Studies
in industry have shown that the source of bug reports is
important because programmers seek out this complementary
information [19].

What is not known is the degree of textual difference
between reports written by experts versus non-experts, and
the effect that this difference has on software maintenance re-
search [20]. The term “textual difference” refers to how experts
may use keywords, sentence structure, and semantics that are
unlike those that non-experts would use to describe the same
problem. This textual difference is important because a large
number of software maintenance research tools rely on text
processing techniques such as information retrieval [4], [7],
[3]. These text processing techniques are sensitive to textual
differences [21], [22], [23]; software maintenance research that
uses these techniques will also be sensitive to text differences.

Textual differences between bug reports from experts ver-
sus non-experts are especially important in software mainte-
nance research. A typical strategy for software maintenance
tools is to treat every bug report in a database equally. For
example, a developer recommendation tool will follow the
same methodology when analyzing bug reports from experts,
as it will follow for reports from non-experts [4], [7], [3],
even though these reports may describe the same problem
in quite different language. Current software maintenance
literature gives little guidance on how – or whether – these
reports should be treated differently. Given that industrial
programmers distinguish between reports from experts versus
non-experts [17], it is plausible that this distinction is also
relevant for software maintenance researchers.

In this paper, we present an empirical study contrasting
bug reports written by experts to bug reports written by non-
experts. For our study, we define an “expert” as anyone who
has contributed to the source code of a project, all others
we consider “non-experts.” In the first part of our study, we
compute the textual difference between bug reports submitted
by experts versus duplicates of those bug reports submitted
by non-experts. We compute the textual difference using short
text similarity metrics STASIS [24] and LSS [25]. We found
that, for the same bugs, non-experts are more likely to write
similar reports than experts are.

To follow up on this finding, we evaluated the effectiveness
of two well-cited software maintenance tools: a developer
recommendation tool [4] and a feature location tool [26]. Over
a large corpus of software projects, we found that textual differ-
ences 1) did not affect performance of the bug triage technique
that is based on text classification for different developers, but
2) did affect performance of the feature location technique
based on textual similarity analysis.

II. THE PROBLEM

We address the following gap in software maintenance
research literature: there is currently little understanding about
the degree of and effect of textual difference in bug reports
written by persons with expert knowledge about the program,
and without that knowledge. At present, this textual difference
may be causing unknown biases or performance problems
in software maintenance research because currently research
treats those bug reports identically. Software engineering prac-
titioners, on the other hand, treat bug reports differently based
on the source of the reports, and find benefits from reading
reports from a diverse set of sources [17], [19]. Software
maintenance researchers are, in effect, making a different
assumption about bug report data than software maintenance
practitioners. But as Panichella et al. point out in a recent ICSE
paper, “poor parameter calibration or wrong assumptions about
the nature of the data could lead to poor results” [27]. Hence,
in our view, we should investigate whether the performance of
software maintenance research tools may be increased if they
more-closely match the behavior of industrial practitioners.

The potential impact of the study is quite extensive. Bug re-
ports are used in almost every corner of software maintenance
research. For example, developer recommendation tools use
text from bug reports to locate the correct developer to repair
the bug [13], [14], [4], [15]. Feature location tools match text
from bug reports to text in source code [28], [6]. Tracebility
tools connect bug reports with a diverse set of software artifacts
based on textual data [9], [29]. Impact analysis tools predict
which artifacts will be affected by incoming change requests,
which are typically bug reports [5], [30], [31], [32]. Defect
prediction tools use text from bug reports as training data to
help predict what areas of source code may contain future
problems or how much time will be required to repair the
bugs [33], [34], [35]. Numerous other software maintenance
tools use bug reports, and this study has the potential to impact
the performance of those tools.

III. BACKGROUND
This section will describe background on the short text

similarity metrics, developer recommendation technique and
feature location that we use in this study. These metrics and
tools have been proposed and evaluated elsewhere; we discuss
them here because they are key components of our study.

A. Short Text Similarity Metrics
We employ two Short Text Similarity Tools in our ap-

proach: STASIS [24] and LSS [25]. STASIS, by Li et al.,
computes a similarity score between two text documents by
blending “word semantic” similarity, “sentence semantic” sim-
ilarity, and “word order” similarity. Word semantic similarity
is similarity in meaning of each word in one document to
each word in another document. STASIS uses WordNet [36]
to calculate the distance between each pair of words in a
knowledge base. A knowledge base is a hierarchical structure
in which words are organized according to their meanings.
STASIS then uses the word semantic similarity to compute
the sentence semantic similarity, which is the similarity be-
tween all the words in one sentence to all the words in a
different sentence. The sentence semantic similarity is then
computed for all sentences in one document to all sentences
in another document. Finally, the word order similarity is used
to determine whether the words in the sentences appear in

roughly similar order, which is important to preserve meaning
in particular for adjectives referring to the same nouns, the
location of qualifiers such as “not”, and subject-verb-object
placement. STASIS then combines these similarities with a
weight of 0.85 given to sentence semantic similarity (which
includes word semantics) and 0.15 to word order.

Croft et al. describe LSS as an alternative. Like STASIS,
LSS uses WordNet to determine the word semantic similarity.
But unlike STASIS, LSS does not consider the order of the
words in the documents. Also, LSS calculates word similarity
using “synsets” of words, which are sets of cognitive synonym
words. The advantage is that LSS is able to identify highly
similar meanings without respect to details such as verb tense,
and without relying on the documents’ authors to choose
identical words. This process is different than in STASIS,
which identifies synonyms solely through the knowledge base
distance. The intent is that LSS is better suited to very short
documents, perhaps only one or two sentences long, while
STASIS may be better suited to longer documents, up to
several paragraphs. We use both in our study because bug
reports are likely to range in size from one sentence up to
perhaps a page or more of text. Note also that we do not
use Latent Dirichlet Allocation (LDA) in our study – the
reason is that even though LDA is widely-used for software
artifacts [27], both STASIS and LSS have been shown to
outperform LDA for computing the similarity short natural
language documents [24], [25], such as bug reports.

B. Developer Recommendation
Open source software is developed by community of de-

velopers that can be distributed across various geographical
locations. Bug tracking systems are particularly important in
open-source software development because they are not only
used to track problems, but also to coordinate work among
developers. Bug tracking systems allow people anywhere in the
world to report a bug. As a result, there are a large number
of bugs that are submitted each day. The time commitment
required to filter the invalid bugs and decide what to do with
new report becomes a burden. Despite the tedious nature of
the task, most bugs are assigned manually to developers, such
as in the case of Mozilla and Eclipse, and have therefore been
forced to introduce team members who are dedicated to bug
triaging.

To solve the problem, various approaches have been pro-
posed to semi-automate the bug triage process. A number
of techniques are based on information retrieval. Canfora
and Cerulo [37] presented an approach based on information
retrieval, in which they use a probabilistic text similarly to
support change request assignment. The paper presented a case
study on Mozilla and KDE which reported recall levels of
around 20% for Mozilla. Some studies combine information
retrieval techniques and processing of source code authorship
information to recommend developers [38].

Some studies use the machine learning techniques.
Cubranic and Murphy [39] proposed a Bayesian learning
approach for bug triage. The prediction model is learned
from labeled bug reports, and makes prediction based on
observed rules. It achieved precision levels of around 30% on
Eclipse. Somasundaram [40] combined a supervised learning
model based on support vector machine and an unsupervised
generative model based on LDA. Tamrawi proposed Bugzie
for triaging based on fuzzy set-based modeling of bug-fixing

expertise of developers [41]. Jeong et al. [42] applied a
graph model based on Markov chains to reveal developer
networks and combined with Bayesian learning help better
assign developers. Anvik et at al. [4] utilized support vector
machine to classify bug and improve precision up to 64% by
refining data set, which filtered out developers who did not
make enough contribution in recent 3 months.

C. Feature Location
The goal of feature location is to identify source code as-

sociated with a given feature of the software system [43]. Over
the years, researchers have proposed several semi-automated
techniques to assist with the process of feature location [43].
Three main types of analysis are typically employed: dynamic,
static and textual-analysis [43]. In this paper, we focus primar-
ily on textual-analysis based techniques.

Several of the feature location techniques proposed by
researchers have applied information retrieval as a means of
analyzing textual information in source code artifacts for fea-
ture location. Marcus et al. [44] first proposed an information
retrieval approach for feature location based on Latent Seman-
tic Indexing (LSI). Cleary and Exton [45] present an approach
based on a complimentary information retrieval method which
used information flow and co-occurrence information derived
from non source code artifact to implement a query expansion-
based concept location technique. Rao and Kak [46] applied
SUM for feature location, which was found to be the best
performance model.

Some researchers have focused on supplementing the
textual-analysis of IR techniques with other sources of in-
formation to enhance the performance of feature location
techniques. Gay et al. [47] proposed to augment information
retrieval based feature location with an explicit relevant feed-
back mechanism. Poshyvanyk et al. [48] proposed a feature
location method called PROMESIR based on Latent Semantic
Indexing and scenario-based probabilistic ranking (SPR), a
dynamic analysis based technique. Lukins [49] proposed an
approach which used Latent Dirichlet allocation (LDA), a more
recent technique for information retrieval, to search for bug-
related methods and files, and the technique has significant
advantages over LSI and pLSI. Rao and Kak [46] found the
performance of VSM model in bug localization is worse than
SUM but better than LDA and LSI.

Zhou et al. proposed BugLocator, an information retrieval
based method for locating the relevant source code files
for fixing bugs according to an initial bug report [26].
BugLocator uses revised Vector space model to rank all files
based on text similarity between the initial bug report and the
source code (rV SMScore), and also takes into consideration
information about similar bugs that have been previously
fixed (SimiScore). The final score is a weighted sum of
these two scores.

FinalScore = (1−α)∗N(rV SMScore)+α∗N(SimiScore)
(1)

, where α is a weighting factor. Zhou et al. compared
BugLocator with LDA, SUM and LSI, the results clearly
showed BugLoctor outperforms all other methods. In empirical
study section, we use BugLocator to evaluate how textual
difference will affect feature location.

IV. EMPIRICAL STUDY DESIGN
This sections explains the design of our empirical study

including our research objective, research questions, method-
ology, and study conditions.

A. Research Questions
The research objective of our empirical study is two-

fold: 1) to determine the degree of the textual difference
between bug reports written by experts and non-experts, and
2) to determine the degree to which that similarity may affect
the performance of software maintenance tools. Towards the
first part of this objective, we pose the following Research
Questions (RQ):

RQ1 What is the degree of textual similarity between
bug reports written by experts and duplicates of
those bug reports written by non-experts?

RQ2 What is the degree of textual similarity among
duplicate bug reports written by experts?

RQ3 What is the degree of textual similarity among
duplicate bug reports written by non-experts?

The rationale behind RQ1 is that both experts and non-
experts write bug reports, and that some percentage of these
reports will be duplicates. Because those duplicates refer to
the same underlying problem, the textual similarity of those
duplicates will indicate the difference between reports written
by experts and non-experts for the same bug. Likewise, the
rationale behind RQ2 and RQ3 is to obtain a baseline for
comparing the textual similarities relative to each other (see
Analysis Questions).

Towards the second part of our research objective, we ask
these research questions:

RQ4 What is the performance of a highly-cited soft-
ware maintenance tool when the inputs to that tool
are bug reports written solely by experts?

RQ5 What is the performance of a highly-cited soft-
ware maintenance tool when the inputs to that tool
are bug reports written solely by non-experts?

RQ6 What is the performance of a highly-cited soft-
ware maintenance tool when the inputs to that tool
are bug reports written by both experts and non-
experts?

The rationale behind RQ4, RQ5, and RQ6 is that it is
plausible that software maintenance tools will have different
performance when provided bug reports from different sources.
This rationale is based on the idea that human programmers
treat expert and non-expert bug reports differently, and that
software maintenance tools might benefit from the distinction
as well (see Section II).

B. Analysis Questions
To analyze and draw conclusions from the data collected

by answering the research questions, we pose the following
two Analysis Questions (AQ):

AQ1 Is there a statistically-significant difference be-
tween the textual similarity values calculated for
RQ1, RQ2, and RQ3?

AQ2 Is there a statistically-significant difference be-
tween the performance values calculated for RQ4,
RQ5, and RQ6?

The rationale behind AQ1 is that if the textual similarity
among bug reports written by experts versus non-experts
is higher than the textual similarity among reports written
solely by experts or solely by non-experts, then it is evidence
that experts and non-experts tend to write bug reports using
different language.

Likewise, the rationale for AQ2 is that if the performance
of the software maintenance tool is higher using one dataset
than another, then it is evidence that software maintenance
tools benefit more from the information in that dataset.
C. Methodology Overview

The methodology we follow to answer our research ques-
tions is to perform three empirical studies. The first involves
AQ1 and the other two involve AQ2.

1) Textual Comparison with Metrics: The first empirical
study is a textual comparison of bug reports. In this study
we divided a repository of bug reports into two groups: bugs
written by experts, and bugs written by non-experts (an expert
is defined as a contributor to source code, all others we
consider non-experts”). Then we extracted any bug reports
labeled as duplicates. This extraction produced three groups
of pairs of duplicates: 1) pairs where both reports were written
by experts, 2) pairs where both reports were written by non-
experts, and 3) pairs where one report was written by an expert
and one was written by a non-expert. For each of these three
groups, we used two different Short Text Similarity algorithms
(see Section III-A) to compute a similarity value for each pair
of duplicates. The result was a list of similarity values for each
of the three groups of duplicate bugs. These lists were our basis
for answering RQ1, RQ2, and RQ3. Finally, we performed
a statistical hypothesis test to determine the significance of
any difference among the mean values of these groups, which
allowed us to answer AQ1.

2) Developer Recommendation: The second empirical
study is to evaluate how textual differences impact textual
analysis based automated approaches to bug triaging. In this
study, we collect bug reports from two bug repositories:
Eclipse 1 and Mozilla2. Table I shows the number of bug
reports, period and the number of developers involved. The
time period starts from the time when the first bug was fixed.
We extracted those bugs which were fixed and tagged as
ASSIGNED, RESOLVED, FIXED, VERIFIED, and CLOSE.
We labeled each of the bugs with a developer id based on
who was assigned to fix the bug. We divided the bug reports
into two groups as was done in the first study: expert and
non-expert. Description of bugs includes two parts in each
report: the title which briefly summarized the issue, and long
description which provided details about the bug. In the study,
we study the impact of textual difference considering the case
where only the summary is used as well as the case where
the summary and short description is used. Two sub groups
are produced for each group: bug description containing title
only (E, NE), or bug description containing title and comment
together (EL, NEL).

There are two phases: training and prediction. First, the
classifier model will be built using labeled bug reports, where
the label is the developer who actually fixed the bug. When
selecting training reports, we used same strategy mentioned by
Anvik et. al. [4]. We refined the set of training reports based on

1https://bugs.eclipse.org/bugs/
2https://bugzilla.mozilla.org/

profiles of each developer, filtering out those bug reports where
the developer fixed less than 9 bugs in the most recent 1000
bugs. After filtering, we consider 24 developers for Mozilla and
21 developers for Eclipse, as shown in Table I. For each group,
we set 10000 as sample size and use 90% as training data
with the remaining 10% being used as testing data. Second,

TABLE I. INFORMATION OF TWO PROJECTS USED IN STUDIES

Bug Report Period # of Developer # of Developer
after refine

Eclipse 214560 10/2001-07/2002 1517 21
Mozilla 195963 04/1998-04/2003 1562 24

when a new report arrives, the classifier will suggest a ranked
list of suitable developers to fix the bug. The higher the
ranking score is, the more suitable the developer will be. To
evaluate our approach we use the same methodology as Anvik
et al. We search the top 3 recommended developers based
on probability, if one is correct developer, we consider the
bug as being assigned correctly. In this study, we evaluate the
impact of textual difference on the accuracy of the developer
recommendation technique in order to answer RQ4, RQ5, and
RQ6.

3) Feature Location: In this empirical study, we evaluated
how the textual difference impacts a textual analysis based
feature location technique, namely BugLocator [26]. We used
the sample data set of SWT (98 bugs) and Eclipse (3070 bugs)
from BugLocator3. Note that this is a subset of the data used
in our other studies. BugLocator will provide a ranked list
of code files for each bug based on a similarity score, which
captures the relationship between a new bug report and the
source code. BugLocator actually combines textual analysis
with an analysis of existing bug reports in order to identify
relevant source code files. The weighting factor α is used to
control how much weight is given to the historical information.
In the paper [26], when α equals 0.2 for SWT and α equals
0.3 for Eclipse, the results are the best, thus we use the same α
values in our experiments. We also examine different levels of
α to see how focusing primarily on textual information impacts
the results. Here we use the same groups that were used in the
developer recommendation study and shown in Table II.

TABLE II. SIZE OF BUG REPORT FROM TWO PROJECTS(α = 0.2)

Project Type Size # of files

SWT
All 98 265

Expert 65 201
NonExpert 38 64

Eclipse
All 3070 10040

Expert 2497 8447
NonExpert 573 1593

D. Measurement Metrics
We use accuracy to evaluate the performance of the

developer recommendation tool for our second empirical
study. The accuracy of prediction is a fraction between the
number of bugs assigned to correct developers and the total
number of bug assignments.

Accuracy =
correct predicted bug

predicted bug
(2)

3http://code.google.com/p/bugcenter/wiki/BugLocator

To measure the effectiveness of feature location method,
we use the following metrics in third empirical study:
• Top N rank, which is the number of bugs whose

associated files are ranked in top N files. Given a bug
report, if the top N query results contains at least one
file at which the bug should be fixed, we consider the
bug located.

• MHR (Mean Highest Rank), which is mean of highest
ranks for all known relevant files when testing n bug
reports.

MHR =

∑
HighestRank

n
(3)

E. Research Subjects
We used two bug repositories for our data. We obtained the

bug reports via public databases for Eclipse4 and Mozilla5.
These repositories are extensive and include several years
of data over several versions of different software products,
including contributions by many programmers and users. Ta-
ble III presents details about the repositories. In total we
extraced over 400,000 bug reports, of which 268,000 were
duplicates suitable for our empirical study.

TABLE III. BUG REPOSITORIES USED FOR THIS STUDY.

Repository Eclipse Mozilla Total
Number of Projects 50 30 80
Number of Bug Reports 200k 200k 400k
Number of Duplicates

Expert vs. Expert 17k 27k 42k
Expert vs. Non-Expert 5k 53k 58k
Non-Expert vs. Non-Expert 16k 152k 168k

In the third study, a subset of the data in Table II is
downloaded from the project site of BugLocator, which was
experimental data used in paper [4]. The sample data is also
subset of Table III.
F. Statistical Tests

We use a Mann-Whitney U-test [50] to determine the
statistical significance of the difference of means among the
groups of short text similarities. The Mann-Whitney test is
appropriate for this analysis because it is unpaired, it is tolerant
of unequal sample sizes, and it is non-parametric. Our data
are unpaired in the sense that we are comparing similaries
of different pairs of bug reports. Our data are of unequal
size because of the varied numbers of duplicate bugs in
the repositories. Finally, we cannot guarantee that the data
are normally-distributed, so we conservatively choose a non-
parametric test.
G. Threats to Validity

As with any study, our work carries threats to validity.
One threat is our bug report repository. The results from our
study are dependent on these repositories, and the results may
not be applicable to bug reports for all programs. We have
attempted to mitigate this threat by using large repositories
with hundreds of thousands of bug reports from different
programs, however we still cannot guarentee that our results
are consistent for every repository. Another threat to validity
is our selection of text similarity algorithms. We use these
algorithms as metrics for determining relative similarity of

4https://bugs.eclipse.org/bugs/
5https://bugzilla.mozilla.org/

text. Different text similarity algorithms might return different
results. Plus, we are exposed to the risk that these algorithms
may have inaccuracies. We attempt to mitigate this risk by
using two different algorithms which have been independently
verified in related literature. A similar risk also exists from the
developer recommendation tool we chose, however this risk is
reduced by the design of our study: we are studying the effect
of different datasets on the tool, and can draw a conclusion
related to these datasets for the tool regardless of inaccuracies
in the tool. A potential threat to validity exists in that different
developer recommendation tools may be affected differently,
though we attempt to mitigate this risk by using a prominent
and frequently-cited tool.

H. Reproducibility
For the purposes of reproducibility and independent study,

we have made all raw data, scripts, tools, processed data,
and statistical results available via an online appendix:
http://www.cse.nd.edu/∼cmc/projects/bugsim/

V. TEXTUAL SIMILARITY RESULTS
This section describes the results of our Empirical Study

for RQ1, RQ2, RQ3, and AQ1. These are the questions from
our study focusing on the textual similarity of bug reports.
We first provide an overview of our results, then provide raw
details related to our research questions, and finally present
our data interpretation that led to our results.

A. Results Overview
A brief overview of our results is that we found evidence

that 1) experts use different language than non-experts to
describe the same bugs, and 2) experts are more consistent
in their use of language in bug reports than non-experts.

B. Detailed Results - RQ1

The degree of textual similarity between bug reports written
by experts and duplicates of those reports written by non-
experts is, on average, 0.609 according to STASIS and 0.983
according to LSS. Descriptive statistics are in Table X and
Figure 1. Though it is not appropriate to draw conclusions
from these numbers in isolation, we observe that while the
range of values is quite large, approximately half of the values
for STASIS lie between 0.55 and 0.65. This is a broader range
than for LSS, where the values fall in a relatively narrow band.
While we do not draw conclusions from these ranges, we
note that they are likely due to differences in the operation
of STASIS and LSS, in that STASIS is intended mostly for
larger blocks of text, while LSS is intended for shorter blocks,
in general (see Section III-A). This is an important distinction
because the repositories contain bug reports of varying lengths.

C. Detailed Results - RQ2

The degree of textual similarity among duplicate bug
reports written by experts is 0.609 according to STASIS and
0.979 according to LSS. We observe a similar pattern for these
similarity values as for RQ1: a somewhat narrow band for
LSS as compared to STASIS. Full descriptive statistics are in
Table X and Figure 1.

D. Detailed Results - RQ3

The degree of textual similarity among duplicates written
by non-experts is 0.619 for STASIS and 0.978 for LSS. The
patterns we observe are consistent with our observations for
RQ1 and RQ2. As before, statistics are in Table X and Figure 1.

VI. EVALUATION OF IMPACTS ON SOFTWARE
MAINTENANCE

The section describe the results of our two empirical
studies: developer recommendation and feature location for
answering RQ4,RQ5,RQ6 and AQ2.

TABLE IV. DEVELOPER RECOMMENDATION OF ECLIPSE

Sample Size(Training/Testing) Accuracy
All 9000/1000 0.8

AllLong 9000/1000 0.75
E 9000/1000 0.81

EL 9000/1000 0.74
NE 9000/1000 0.81

NEL 9000/1000 0.75

TABLE V. DEVELOPER RECOMMENDATION OF MOZILLA

Sample Size(Training/Testing) Accuracy
All 9000/1000 0.68

AllLong 9000/1000 0.70
E 9000/1000 0.64

EL 9000/1000 0.58
NE 9000/1000 0.64

NEL 9000/1000 0.58

A. Detailed Results - RQ4

In developer recommendation study, when we used bug
description without comments and only expert bugs are con-
sidered, for Eclipse in Table IV, accuracy for development
recommendation in Eclipse is 0.81, for Mozilla Table V shows
accuracy is 0.64. When comments are added in bug descrip-
tion, both accuracy is decreased 0.75 and 0.58 respectively.

In Feature location study, for SWT when α equals 0.2,
the accuracy is 35% at top 1 when we used bug description
without comments(E), which is higher than accuracy(32%)
when comments is considered(EL). As increasing ranking
range, the EL’s accuracy is higher than E’s. E’s MHR is higher
than EL’s when history is only one factor(α = 1),that means
longer description is helpful when only considering similarity
with bugs that had fixed before.

TABLE VI. FEATURE LOCATION OF SWT (α = 0.2)

MFR Top 1 Top 5 Top 10 Top 20 Top 50

All 12.4 35/98 64/98 72/98 84/98 94/98
(36%) (65%) (73%) (86%) (96%)

AllLong 8.46 36/98 69/98 80/98 89/98 96/98
(37%) (70%) (82%) (91%) (98%)

E 8.49 23/65 41/65 46/65 56/65 64/65
(35%) (63%) (71%) (86%) (98%)

EL 10.63 21/65 44/65 50/65 59/65 63/65
(32%) (68%) (77%) (91%) (97%)

NE 21.68 11/33 20/33 24/33 29/33 29/33
(33%) (61%) (73%) (88%) (88%)

NEL 5.27 15/33 22/33 29/33 30/33 33/33
(45%) (67%) (88%) (91%) (100%)

B. Detailed Results - RQ5

In developer recommendation study, when we used bug
description without comments and only non-expert bugs are
considered, for Eclipse in Table IV, accuracy for development
recommendation in Eclipse is 0.74, for Moziila in Table V,
accuracy is 0.64. When comments is added in bug description,
both accuracy is decreased 0.75 and 0.58 respectively.

In studies of feature location, from Table VI, we can see
that the non-expert bug report with long description (NEL)

TABLE VII. FEATURE LOCATION OF ECLIPSE (α = 0.3)

MFR Top 1 Top 5 Top 10 Top 20 Top 50

All 380.6 668/3070 1231/3070 1479/3070 1709/3070 2039/3070
(22%) (40%) (48%) (56%) (66%)

AllLong 135.46 987/3070 1726/3070 2030/3070 2265/3070 2518/3070
(32%) (56%) (66%) (74%) (82%)

E 393.77 558/2497 1726/2497 2030/2497 2265/2497 2518/2497
(22%) (41%) (49%) (56%) (67%)

EL 129.28 795/2497 1427/2497 1669/2497 1859/2497 2048/2497
(32%) (57%) (67%) (74%) (81%)

NE 426.58 107/573 180/573 227/573 276/573 344/573
(19%) (31%) (40%) (48%) (60%)

NEL 211 165/573 275/573 337/573 393/573 443/573
(29%) (48%) (59%) (69%) (77%)

will achieve the highest ranks among all bug report types.
Comparing all bugs with and without long description (All
and AllLong), for most α values, we can say that the long
description helps to achieve higher ranks. The same result we
can also get from comparing the non-expert bug reports with
and without long description (NE and NEL). However, for
the bug reports written by experts, the longer description will
lower the ranks.

C. Detailed Results - RQ6

From Table IX MHR of Eclipse, all the bug reports types
with long description (AllLong, EL and NEL) have relevantly
equal ranking performance which is much better than the types
without long description (AllLong, E and NE). And also the
NE type (non-expert bug description) has the worst MHR
performance among all types.

TABLE VIII. MHR OF SWT

α All AllLong E EL NE NEL
0 13.92 9.38 6.56 11.15 22.51 5.88

0.1 13.07 8.82 9.01 10.72 22.06 5.39
0.2 12.44 8.46 8.49 10.63 21.58 5.27
0.3 11.88 8.47 8.45 10.75 21.33 5.3
0.4 11.71 8.8 8.28 11.09 21.18 5.3
0.5 11.83 9.26 8.29 11.86 21.27 6.03
0.6 12.01 9.84 8.49 12.65 21.33 6.42
0.7 12.17 10.71 8.63 13.33 21.39 7.36
0.8 12.45 11.72 9.01 14.36 21.36 8.24
0.9 13.08 13.59 9.71 15.23 21.36 9.45
1 140.52 88.91 156.32 90.32 200.06 160.58

Mean(0-0.9) 12.46 9.91 8.49 12.18 21.54 6.46

TABLE IX. MHR OF ECLIPSE

α All AllLong E EL NE NEL
0 420.96 149.21 417.5 149.26 477.25 152.93

0.3 393.05 144.44 384.02 129.71 508.9 134.14
0.5 380.43 129.27 417.94 141.53 550.61 147.06
1 2857.71 2293.75 2885.21 2230.18 3894.08 3436.27

Mean(0-0.5) 398.15 140.97 406.49 140.17 512.25 144.71

VII. COMPARISON ANALYSIS
In this section, we describe our results for AQ1 and AQ2.

A. AQ1 - Textual Similarity
We found statistically-significant evidence for the differ-

ence of the means for both STASIS and LSS reported for
RQ1, RQ2, and RQ3. We compared the STASIS values from
RQ1, RQ2, and RQ3. Likewise, we compared the LSS values
for those RQs. Note that we do not compare STASIS values
to LSS values in our statistical analysis, as the two metrics
operate differently.

TABLE X. STATISTICAL SUMMARY OF THE RESULTS FOR AQ1 . MANN-WHITNEY TEST VALUES ARE U , Uexpt , AND Uvari . DECISION CRITERIA IS p.
A “SAMPLE” IS A SIMILARITY VALUE FOR ONE PAIR OF DUPLICATE BUG REPORTS.

H Metric Method Area Samples x̃ µ Vari. T Texpt Tvari p Decision

H1 STASIS Expert-Expert 44717 0.609 0.607 0.020
3.450×109 -5.096×108 1.350×1014 <0.0001 RejectNonEx.-NonEx. 169305 0.624 0.619 0.011

H2 STASIS Expert-Expert 44717 0.609 0.607 0.020
1.346×109 -8.166×108 2.315×1013 <0.0001 RejectExpert-NonEx. 59565 0.609 0.597 0.008

H3 STASIS NonEx.-NonEx. 169305 0.624 0.619 0.011
5.620×109 7.474×108 1.923×1014 <0.0001 RejectExpert-NonEx. 59565 0.609 0.597 0.008

H4 LSS Expert-Expert 44644 0.979 0.968 0.002
2.963×109 -5.167×108 1.347×1014 <0.0001 RejectNonEx.-NonEx. 169264 0.985 0.978 0.001

H5 LSS Expert-Expert 44644 0.979 0.968 0.002
1.167×109 -8.187×108 2.307×1013 <0.0001 RejectExpert-NonEx. 59526 0.983 0.975 0.001

H6 LSS NonEx.-NonEx. 169264 0.985 0.978 0.001
5.583×109 7.428×108 1.921×1014 <0.0001 RejectExpert-NonEx. 59526 0.983 0.975 0.001

The procedure we used to obtain the evidence is as follows.
Consider the statistical data in Table X. We organized this table
by similarity value for expert-written reports to duplicates writ-
ten by other experts (“Expert-Expert”) compared to similarity
values for non-expert-written reports to duplicates written by
other non-experts (“NonEx.-NonEx.”). We also compared these
similarity values to similarities for expert-written reports to
non-expert-written duplicates (“Expert-NonEx.”). These simi-
larity values are further separated by the metric which pro-
duced those values (STASIS or LSS). We then posed six
hypotheses:

H1 The difference between STASIS similarities for
Experts-Experts and NonEx.-NonEx. is not statis-
tically signficant.

H2 The difference between STASIS similarities for
Experts-Experts and Experts-NonEx. is not statis-
tically signficant.

H3 The difference between STASIS similarities for
NonEx.-NonEx. and Experts-NonEx. is not sta-
tistically signficant.

H4 The difference between LSS similarities for
Experts-Experts and NonEx.-NonEx. is not sta-
tistically signficant.

H5 The difference between LSS similarities for
Experts-Experts and Experts-NonEx. is not sta-
tistically signficant.

H6 The difference between LSS similarities for
NonEx.-NonEx. and Experts-NonEx. is not sta-
tistically signficant.

We performed a Mann-Whitney test for each of these
hypotheses (see Section IV-F). We rejected a hypothesis only
if the value for Z exceeded Zcrit and p exceeded 0.05. Based
on these criteria, we found evidence to reject all hypotheses.

B. AQ2 - Effects on Tools
We compare the mean for ranking score for correct devel-

oper from different groups (All, E, NE). Each groups contains
1000 bugs in our study. To find statistically significant evidence
for RQ3,RQ4,RQ5 in developer recommendation, we produced
three hypotheses:

H7 The difference between accuracy in developer
recommendation from Experts reports and NonEx.
reports is not statistically significant.

We perform a u-test for H7 in two projects: Eclipse and
Mozilla. We rejected hypothesis when p exceeded 0.5. Table
XI presents the hypothesis in Eclipse when comments is
considered in bug report.

We also compare the mean for final similarity(FinalScore
Section III) between bug report and relevant source code files

from each group. To find statistically significant evidence
for RQ3,RQ4,RQ5 in feature location, we produced three
hypotheses:

H8 The difference between final similarities in feature
location study for Experts reports and NonEx.
reports is not statistically significant.

We performed a u-tests for H8 to compare Expert and
NonEx (see Section IV-F). At .05 level, we reject hypothesis
H8.

(a)

(b)

Fig. 1. Boxplots comparing (a) STASIS similarity (b) LSS similarity for
Expert-Expert, Expert-NonExpert, and NonExpert-NonExpert. The red line
indicates the mean and the yellow line separating the gray and black areas
indicates the median

TABLE XI. MANN-WHITNEY TEST RESULT OF RANKING SCORE IN DEVELOPER RECOMMENDATION TEST

Project H Comparison Sample x̃ µ Vari. U Z Zcritical p(two-tail) Decision

Mozilla H7

E. 1000 3.262 3.262 24.013 497995 -0.155 1.949964 0.877 Fail to rejectNE. 1000 3.248 3.248 24.111
EL. 1000 3.985 3.985 30.764 499633 -0.028 1.949964 0.978 Fail to rejectNEL. 1000 3.99 3.99 30.654

Eclipse H7

E. 1000 1.716 1.665 11.08386 499927.5 -0.006 1.949964 0.996 Fail to rejectNE. 1000 1.72 1.716 11.795
EL. 1000 2.223 2.198 15.198 459685.5 0.001 1.949964 0.02 RejectNEL. 1000 2.215 15.162 2.223

TABLE XII. MANN-WHITNEY TEST RESULTS OF SIMI SCORE IN FEATURE LOCATION TEST

Project H Comparison Sample x̃ µ Vari. U Z Zcritical p(two-tail) Decision

SWT H8

E. 201 0.269 0.269 0.098 4555.5 -3.514 1.949964 <0.001 RejectNE. 64 0.387 0.387 0.096
EL. 201 0.383 0.383 0.087 4864 -2.936 1.949964 0.003 RejectNEL. 64 3.99 3.99 30.654

Eclipse H8

E. 8447 0.260 0.26 0.065 6489003.5 -2.253 1.949964 0.024 RejectNE. 1593 0.278 0.278 0.056
EL. 8447 0.335 0.335 0.067 6311668 -3.924 1.949964 <0.001 RejectNEL. 1593 0.352 0.352 0.054

VIII. INTERPRETATION
One key finding we discovered is that, for the same bugs,

non-experts are more likely to write similar reports than
experts are (we rejected both H1 and H4). In other words, the
variation in information described by experts is higher than
the variation among non-experts. A possible explanation from
related work is that experts focus on knowledge about parts
of the source code which cause the bug, while non-experts
describe a range of faulty behaviors they experience [17],
[18]. However, this empirical study alone does not include
evidence for this explanation – it only confirms the existence of
a difference in how experts and non-experts write bug reports,
and that the variation among experts is lower than among non-
experts.

We did not find evidence that experts write more or less
varied reports compared to other experts, versus compared to
non-experts. While we rejected both H2 and H5, the direction
of the difference in means was different for STASIS and LSS.
This means that the similarity metrics did not agree, which
leaves us unable to draw a strong conclusion about the textual
similarities.

A further finding is that the textual similarity of bug reports
written by non-experts is higher as compared to other non-
experts, versus when compared to experts. We rejected both
H3 and H6, and both similarity metrics agreed on the direction
of the difference. What this means is that the most consistent
group of bug reports was the non-experts to other non-experts.
Therefore, non-experts write reports that are more similar
to each other, than to reports written by experts.

In analyzing the effects of these differences, we came
to two conclusions. First, that the developer recommendation
tool was not affected by a statistically-significant margin
(only one of four statistical tests rejected). But on the other
hand, the feature location tool was affected (all four tests
rejected). Therefore, we find that different tools are affected to
different degrees by the expert and non-expert bug reports. Our
recommendation is that software maintenance tools be tested
for this effect to maximize the performance of the tools.

IX. RELATED WORK

Dit et al. present a technique for comparing the semantic
similarity of bug reports, though this study did not explore
the differences of expert and non-expert knowledge [20].
Considerable effort has been devoted to analyzing software bug
reports for software maintenance tasks, motivated by studies of

the high volume of bug reports constantly being submitted. For
example, a Mozilla developer claimed that, “everyday, almost
300 bugs appear that need triaging. This is far too much for
only the Mozilla programmers to handle” [51]. Researchers’
answers to this problem have analyzed past changes to the
system to identify which developers possess relevant expertise
[52], [53], [54], [55], [56], [57], [58]. Other approaches which
take into account textual information from bug reports, commit
logs, and source code have also been proposed [59], [51],
[60], [61], [62], [63], [64]. Another issue resulting from
the openness of bug repositories and the high volume of
reports submitted is the presence of duplicate reports. Several
techniques have been proposed to identify duplicates and they
typically leverage information retrieval techniques to compare
the descriptions of bug reports and identify those that are
textually similar [65], [66], [67], [68], [69], [70]. Note that
in certain cases, other information sources, such as execution
traces, are also used to identify duplicate bug reports [67].
Research have also conducted several empirical studies to
investigate the impact of authorship on code quality [71], [72],
developer contributions and working habits [73], [74], [75],
[76], [77] as well as other properties related to quality, time to
fix issues, severity and classification [78], [1], [79], [80], [81],
[82], [83], [34], [84], [85].

X. CONCLUSION
We have presented a study of the textual difference between

bug reports written by experts and non-experts, with experts
being defined as persons who has contributed to the source
code. We found that experts and non-experts wrote bug reports
differently as measured by textual similarity metrics. Our
results support the thesis that expert knowledge affects the way
in which people write bug reports. We also found that this
difference is relevant for software maintenance researchers,
because it affects the performance of software maintenance
research tools.

ACKNOWLEDGMENT
The authors would like to thank the Eclipse Foundation

and Mozilla Foundation for providing the repositories of data
used in this paper.

REFERENCES
[1] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and T. Zim-

mermann, “What makes a good bug report?” in Proceedings of the 16th
ACM SIGSOFT International Symposium on Foundations of software
engineering, ser. SIGSOFT ’08/FSE-16, 2008, pp. 308–318.

[2] S. Bugde, N. Nagappan, S. Rajamani, and G. Ramalingam, “Global
software servicing: Observational experiences at microsoft,” 2013 IEEE
8th International Conference on Global Software Engineering, vol. 0,
pp. 182–191, 2008.

[3] H. Kagdi and D. Poshyvanyk, “Who can help me with this change
request?” in Program Comprehension, 2009. ICPC ’09. IEEE 17th
International Conference on, 2009, pp. 273–277.

[4] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?” in
Proceedings of the 28th international conference on Software engineer-
ing, ser. ICSE ’06, 2006, pp. 361–370.

[5] M. Gethers, H. Kagdi, B. Dit, and D. Poshyvanyk, “An adaptive
approach to impact analysis from change requests to source code,” in
Proceedings of the 2011 26th IEEE/ACM International Conference on
Automated Software Engineering, ser. ASE ’11, 2011, pp. 540–543.

[6] D. Liu, A. Marcus, D. Poshyvanyk, and V. Rajlich, “Feature location
via information retrieval based filtering of a single scenario execution
trace,” in Proceedings of the twenty-second IEEE/ACM international
conference on Automated software engineering, 2007, pp. 234–243.

[7] D. Poshyvanyk, M. Gethers, and A. Marcus, “Concept location using
formal concept analysis and information retrieval,” ACM Trans. Softw.
Eng. Methodol., vol. 21, no. 4, pp. 23:1–23:34, Feb. 2013.

[8] S. K. Lukins, N. A. Kraft, and L. H. Etzkorn, “Bug localization using
latent dirichlet allocation,” Inf. Softw. Technol., vol. 52, no. 9, pp. 972–
990, Sep. 2010.

[9] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo,
“Recovering traceability links between code and documentation,” IEEE
Trans. Softw. Eng., vol. 28, no. 10, pp. 970–983, Oct. 2002.

[10] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two case studies of
open source software development: Apache and mozilla,” ACM Trans.
Softw. Eng. Methodol., vol. 11, no. 3, pp. 309–346, Jul. 2002.

[11] S. Jarzabek, Effective Software Maintenance and Evolution: A Reuse-
Based Approach, 2007.

[12] J. T. Nosek and P. Palvia, “Software maintenance management: Changes
in the last decade,” Journal of Software Maintenance: Research and
Practice, vol. 2, no. 3, pp. 157–174, 1990.

[13] S. Letovsky, “Cognitive processes in program comprehension,” Journal
of Systems and Software, vol. 7, no. 4, pp. 325 – 339, 1987.

[14] L. L. Levesque, J. M. Wilson, and D. R. Wholey, “Cognitive divergence
and shared mental models in software development project teams,”
Journal of Organizational Behavior, vol. 22, no. 2, pp. 135–144, 2001.

[15] A. Begel and B. Simon, “Struggles of new college graduates in their
first software development job,” in 39th SIGCSE technical symposium
on Computer science education, 2008, pp. 226–230.

[16] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges
of modern code review,” in Proceedings of the 2013 International
Conference on Software Engineering. IEEE Press, 2013, pp. 712–721.

[17] R. Hofman, “Behavioral economics in software quality engineering,”
Empirical Softw. Engg., vol. 16, no. 2, pp. 278–293, Apr. 2011.

[18] A. Ko, “Mining whining in support forums with frictionary,” in CHI
’12 Extended Abstracts on Human Factors in Computing Systems, ser.
CHI EA ’12, 2012, pp. 191–200.

[19] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim, “Duplicate bug
reports considered harmful... really?” in Software Maintenance, 2008.
ICSM 2008. IEEE International Conference on, 2008, pp. 337–345.

[20] B. Dit, D. Poshyvanyk, and A. Marcus, “Measuring the semantic
similarity of comments in bug reports,” Proc. of 1st STSM, vol. 8, 2008.

[21] E. M. Voorhees, “Using wordnet to disambiguate word senses for text
retrieval,” in Proceedings of the 16th annual international ACM SIGIR
conference on Research and development in information retrieval, ser.
SIGIR ’93, 1993, pp. 171–180.

[22] R. Krovetz and W. B. Croft, “Lexical ambiguity and information
retrieval,” ACM Trans. Inf. Syst., vol. 10, no. 2, pp. 115–141, Apr. 1992.

[23] M. Sanderson and C. J. Van Rijsbergen, “The impact on retrieval
effectiveness of skewed frequency distributions,” ACM Trans. Inf. Syst.,
vol. 17, no. 4, pp. 440–465, Oct. 1999.

[24] Y. Li, Z. A. Bandar, and D. McLean, “An approach for measuring
semantic similarity between words using multiple information sources,”
IEEE Trans. on Knowl. and Data Eng., vol. 15, no. 4, pp. 871–882,
Jul. 2003.

[25] D. Croft, S. Coupland, J. Shell, and S. Brown, “A fast and efficient
semantic short text similarity metric,” in Computational Intelligence
(UKCI), 2013 13th UK Workshop on, Sept 2013, pp. 221–227.

[26] J. Zhou, H. Zhang, and D. Lo, “Where should the bugs be fixed?
more accurate information retrieval-based bug localization based on
bug reports,” in Software Engineering (ICSE), 2012 34th International
Conference on, June 2012, pp. 14–24.

[27] A. Panichella, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, and
A. De Lucia, “How to effectively use topic models for software engi-
neering tasks? an approach based on genetic algorithms,” in Proceedings
of the 2013 International Conference on Software Engineering, ser.
ICSE ’13, 2013, pp. 522–531.

[28] M. Revelle and D. Poshyvanyk, “An exploratory study on assessing
feature location techniques,” in Program Comprehension, 2009. ICPC
’09. IEEE 17th International Conference on, May 2009, pp. 218–222.

[29] R. Wu, H. Zhang, S. Kim, and S.-C. Cheung, “Relink: Recovering links
between bugs and changes,” in Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of
Software Engineering, ser. ESEC/FSE ’11, 2011, pp. 15–25.

[30] A. Orso, T. Apiwattanapong, J. Law, G. Rothermel, and M. J. Harrold,
“An empirical comparison of dynamic impact analysis algorithms,”
in Proceedings of the 26th International Conference on Software
Engineering, ser. ICSE ’04, 2004, pp. 491–500.

[31] X. Ren, B. G. Ryder, M. Stoerzer, and F. Tip, “Chianti: A change
impact analysis tool for java programs,” in Proceedings of the 27th
International Conference on Software Engineering, ser. ICSE ’05, 2005,
pp. 664–665.

[32] M. Torchiano and F. Ricca, “Impact analysis by means of unstructured
knowledge in the context of bug repositories,” in Proceedings of
the 2010 ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement, ser. ESEM ’10, 2010, pp. 47:1–47:4.

[33] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting defects
for eclipse,” in Predictor Models in Software Engineering, 2007.
PROMISE’07: ICSE Workshops 2007. International Workshop on, May
2007, pp. 9–9.

[34] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller, “How long will
it take to fix this bug?” in Proceedings of the Fourth International
Workshop on Mining Software Repositories, ser. MSR ’07, 2007, pp.
1–.

[35] S. Kim, H. Zhang, R. Wu, and L. Gong, “Dealing with noise in defect
prediction,” in Proceedings of the 33rd International Conference on
Software Engineering, ser. ICSE ’11, 2011, pp. 481–490.

[36] G. A. Miller, “Wordnet: A lexical database for english,” Commun. ACM,
vol. 38, no. 11, pp. 39–41, Nov. 1995.

[37] G. Canfora and L. Cerulo, “How software repositories can help in
resolving a new change request,” in In Workshop on Empirical Studies
in Reverse Engineering, 2005.

[38] M. Linares-Vasquez, K. Hossen, H. Dang, H. Kagdi, M. Gethers, and
D. Poshyvanyk, “Triaging incoming change requests: Bug or commit
history, or code authorship?” in Software Maintenance (ICSM), 2012
28th IEEE International Conference on, Sept 2012, pp. 451–460.

[39] D. ubrani, “Automatic bug triage using text categorization,” in In
SEKE 2004: Proceedings of the Sixteenth International Conference on
Software Engineering Knowledge Engineering, 2004, pp. 92–97.

[40] K. Somasundaram and G. C. Murphy, “Automatic categorization of bug
reports using latent dirichlet allocation,” in Proceedings of the 5th India
Software Engineering Conference, ser. ISEC ’12, 2012, pp. 125–130.

[41] A. Tamrawi, T. T. Nguyen, J. Al-Kofahi, and T. N. Nguyen, “Fuzzy set-
based automatic bug triaging (nier track),” in Proceedings of the 33rd
International Conference on Software Engineering, 2011, pp. 884–887.

[42] G. Jeong, S. Kim, and T. Zimmermann, “Improving bug triage with
bug tossing graphs,” in Proceedings of the the 7th Joint Meeting of
the European Software Engineering Conference and the ACM SIG-
SOFT Symposium on The Foundations of Software Engineering, ser.
ESEC/FSE ’09, 2009, pp. 111–120.

[43] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature location
in source code: a taxonomy and survey,” Journal of Software: Evolution
and Process, vol. 25, no. 1, pp. 53–95, 2013.

[44] A. Marcus, A. Sergeyev, V. Rajlich, and J. Maletic, “An information
retrieval approach to concept location in source code,” in WCRE, 2004.

[45] B. Cleary, C. Exton, J. Buckley, and M. English, “An empirical analysis
of information retrieval based concept location techniques in software
comprehension,” Empirical Softw. Engg., vol. 14, no. 1, pp. 93–130,
Feb. 2009.

[46] S. Rao and A. Kak, “Retrieval from software libraries for bug local-
ization: A comparative study of generic and composite text models,”
in Proceedings of the 8th Working Conference on Mining Software
Repositories, ser. MSR ’11, 2011, pp. 43–52.

[47] G. Gay, S. Haiduc, A. Marcus, and T. Menzies, “On the use of relevance
feedback in ir-based concept location,” in Software Maintenance, 2009.
IEEE International Conference on, 2009, pp. 351–360.

[48] D. Poshyvanyk, Y.-G. Gueheneuc, A. Marcus, G. Antoniol, and V. Ra-
jlich, “Feature location using probabilistic ranking of methods based
on execution scenarios and information retrieval,” IEEE Trans. Softw.
Eng., vol. 33, no. 6, pp. 420–432, Jun. 2007.

[49] S. K. Lukins, N. A. Kraft, and L. H. Etzkorn, “Bug localization
using latent dirichlet allocation,” Information and Software Technology,
vol. 52, no. 9, pp. 972 – 990, 2010.

[50] M. D. Smucker, J. Allan, and B. Carterette, “A comparison of statistical
significance tests for information retrieval evaluation,” in CIKM, 2007,
pp. 623–632.

[51] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?” in
Proceedings of the 28th international conference on Software engineer-
ing, ser. ICSE ’06, 2006, pp. 361–370.

[52] D. W. McDonald and M. S. Ackerman, “Expertise recommender: a
flexible recommendation system and architecture,” in Proceedings of
the 2000 ACM conference on Computer supported cooperative work,
ser. CSCW ’00, 2000, pp. 231–240.

[53] S. Minto and G. C. Murphy, “Recommending emergent teams,” in
Proceedings of the Fourth International Workshop on Mining Software
Repositories, ser. MSR ’07, 2007, pp. 5–.

[54] A. Mockus and J. D. Herbsleb, “Expertise browser: a quantitative ap-
proach to identifying expertise,” in Proceedings of the 24th International
Conference on Software Engineering, ser. ICSE ’02, 2002, pp. 503–512.

[55] J. Anvik and G. C. Murphy, “Determining implementation expertise
from bug reports,” in Proceedings of the Fourth International Workshop
on Mining Software Repositories, ser. MSR ’07, 2007, pp. 2–.

[56] D. Ma, D. Schuler, T. Zimmermann, and J. Sillito, “Expert recommen-
dation with usage expertise,” vol. 0, 2009, pp. 535–538.

[57] G. Canfora and L. Cerulo, “Supporting change request assignment in
open source development,” in Proceedings of the 2006 ACM symposium
on Applied computing, ser. SAC ’06, 2006, pp. 1767–1772.

[58] J. Anvik and G. Murphy, “Reducing the effort of bug report triage:
Recommenders for development-oriented decisions,” ACM Transactions
on Software Engineering and Methodology, vol. 20, no. 3, p. 10, 2011.

[59] A. Tamrawi, T. T. Nguyen, J. M. Al-Kofahi, and T. N. Nguyen, “Fuzzy
set and cache-based approach for bug triaging,” in Proceedings of the
19th ACM SIGSOFT symposium and the 13th European conference on
Foundations of software engineering, 2011, pp. 365–375.

[60] X. Song, B. Tseng, C.-Y. Lin, and M.-T. Sun, “Expertisenet: Relational
and evolutionary expert modeling,” in User Modeling 2005, ser. Lecture
Notes in Computer Science, L. Ardissono, P. Brna, and A. Mitrovic,
Eds., 2005, vol. 3538, pp. 99–108.

[61] D. Matter, A. Kuhn, and O. Nierstrasz, “Assigning bug reports using a
vocabulary-based expertise model of developers,” in Proceedings of the
2009 6th IEEE International Working Conference on Mining Software
Repositories, ser. MSR ’09, 2009, pp. 131–140.

[62] H. Kagdi, M. Gethers, D. Poshyvanyk, and M. Hammad, “Assigning
change requests to software developers,” Journal of Software Mainte-
nance and Evolution: Research and Practice (JSME), 2011.

[63] M. Linares-Vasquez, H. Dang, K. Hossen, H. Kagdi, M. Gethers, and
D. Poshyvanyk, “Triaging incoming change requests: Bug or commit
history, or code authorship?” in 28th IEEE International Conference on
Software Maintenance (ICSM’12), Riva del Garda, Italy, 2012.

[64] D. Čubranić and G. Murphy, “Automatic bug triage using text catego-
rization,” in In SEKE 2004: Proceedings of the Sixteenth International
Conference on Software Engineering & Knowledge Engineering, 2004.

[65] P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of duplicate
defect reports using natural language processing,” in Proceedings of the

29th international conference on Software Engineering, ser. ICSE ’07,
2007, pp. 499–510.

[66] L. Hiew, “Assisted detection of duplicate bug reports,” Ph.D. disserta-
tion, The University Of British Columbia, 2006.

[67] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An approach to
detecting duplicate bug reports using natural language and execution
information,” in Proceedings of the 30th international conference on
Software engineering, ser. ICSE ’08, 2008, pp. 461–470.

[68] N. Jalbert and W. Weimer, “Automated duplicate detection for bug
tracking systems,” in Dependable Systems and Networks With FTCS
and DCC, 2008. IEEE International Conference on, 2008, pp. 52–61.

[69] C. Sun, D. Lo, X. Wang, J. Jiang, and S.-C. Khoo, “A discriminative
model approach for accurate duplicate bug report retrieval,” in Pro-
ceedings of the 32nd ACM/IEEE International Conference on Software
Engineering - Volume 1, ser. ICSE ’10, 2010, pp. 45–54.

[70] C. Sun, D. Lo, S.-C. Khoo, and J. Jiang, “Towards more accurate
retrieval of duplicate bug reports,” in Proceedings of the 2011 26th
IEEE/ACM International Conference on Automated Software Engineer-
ing, ser. ASE ’11, 2011, pp. 253–262.

[71] F. Rahman and P. Devanbu, “Ownership, experience and defects: a fine-
grained study of authorship,” in Proceedings of the 33rd International
Conference on Software Engineering, ser. ICSE ’11, 2011, pp. 491–500.

[72] C. Bird, N. Nagappan, B. Murphy, H. Gall, and P. Devanbu, “Don’t
touch my code!: examining the effects of ownership on software
quality,” in Proceedings of the 19th ACM SIGSOFT symposium and
the 13th European conference on Foundations of software engineering,
ser. ESEC/FSE ’11, 2011, pp. 4–14.

[73] D. M. German, “A study of the contributors of postgresql,” in Pro-
ceedings of the 2006 international workshop on Mining software
repositories, ser. MSR ’06, 2006, pp. 163–164.

[74] M. Tsunoda, A. Monden, T. Kakimoto, Y. Kamei, and K.-i. Matsumoto,
“Analyzing oss developers’ working time using mailing lists archives,”
in Proceedings of the 2006 international workshop on Mining software
repositories, ser. MSR ’06, 2006, pp. 181–182.

[75] P. Weissgerber, M. Pohl, and M. Burch, “Visual data mining in software
archives to detect how developers work together,” in Proceedings of the
Fourth International Workshop on Mining Software Repositories, ser.
MSR ’07, 2007, pp. 9–.

[76] D. M. German, “An empirical study of fine-grained software modifica-
tions,” Empirical Softw. Engg., vol. 11, no. 3, pp. 369–393, Sep. 2006.

[77] M. Fischer, M. Pinzger, and H. Gall, “Populating a release history
database from version control and bug tracking systems,” in Interna-
tional Conference on Software Maintenance (ICSM’03), 2003, pp. 23–.

[78] P. Hooimeijer and W. Weimer, “Modeling bug report quality,” in
Proceedings of the twenty-second IEEE/ACM international conference
on Automated software engineering, ser. ASE ’07, 2007, pp. 34–43.

[79] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch, J. Sun, and
B. Wang, “Automated support for classifying software failure reports,”
in Proceedings of the 25th International Conference on Software
Engineering, ser. ICSE ’03, 2003, pp. 465–475.

[80] T. Menzies and A. Marcus, “Automated severity assessment of software
defect reports,” in Software Maintenance, 2008. ICSM 2008. IEEE
International Conference on, 28 2008-oct. 4 2008, pp. 346 –355.

[81] N. Bettenburg, S. Just, A. Schröter, C. Weiß, R. Premraj, and T. Zimmer-
mann, “Quality of bug reports in eclipse,” in 2007 OOPSLA workshop
on eclipse technology eXchange, 2007, pp. 21–25.

[82] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim, “Duplicate
bug reports considered harmful ... really?” in Software Maintenance,
2008. IEEE International Conference on, 2008, pp. 337 –345.

[83] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and T. Zim-
mermann, “What makes a good bug report?” in Proceedings of the 16th
ACM SIGSOFT International Symposium on Foundations of software
engineering, ser. SIGSOFT ’08/FSE-16, 2008, pp. 308–318.

[84] S. Kim and E. J. Whitehead, Jr., “How long did it take to fix bugs?”
in Proceedings of the 2006 international workshop on Mining software
repositories, ser. MSR ’06, 2006, pp. 173–174.

[85] L. Marks, Y. Zou, and A. E. Hassan, “Studying the fix-time for bugs
in large open source projects,” in 7th International Conference on
Predictive Models in Software Engineering, 2011, pp. 11:1–11:8.

