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Abstract “Change Impact Analysis” is the process of determining the conse-
quences of a modification to software. In theory, change impact analysis should
be done during software maintenance, to make sure changes do not introduce
new bugs. Many approaches and techniques are proposed to help programmers
do change impact analysis automatically. However, it is still an open question
whether and how programmers do change impact analysis. In this paper, we con-
ducted two studies, one in-depth study and one breadth study. For the in-depth
study, we recorded videos of nine professional programmers repairing two bugs for
two hours. For the breadth study, we surveyed 35 professional programmers using
an online system. We found that the programmers in our studies did static change
impact analysis before they made changes by using IDE navigational functional-
ities, and they did dynamic change impact analysis after they made changes by
running the programs. We also found that they did not use any change impact
analysis tools.
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1 Introduction

Change impact analysis (IA) is the task of finding the consequences of an alter-
ation to software [6,39]. From a programmer’s perspective, those consequences are
typically the components of source code that would need to be modified in order
to make a change. For example, if function A in a program is modified, and func-
tion B depends on function A, then function B may also need to be modified. IA
is important because features in programs tend to be implemented across many
components in source code [15,34], and a change to any one of the components
may affect several of the others.

In theory, programmers will do change impact analysis prior to making any
changes to the source code. Consider the example of repairing a bug. The consensus
in the literature is that programmers 1) localize the bug behavior to a function or
other set of statements, 2) determine a change to that code that will repair the
bug, 3) do change impact analysis to determine the effects of that change, and 4)
implement and test that change [6,21,10,28]. Several change impact analysis tools
have been created based on this consensus, including static [10], dynamic [28], and
conceptual [21] solutions.

While these tools have been shown to be effective, in practice no procedure
has emerged as a standard accepted by a majority of programmers. This situation
is akin to that pointed out for program comprehension tools by Roehm et al. at
ICSE 2012 [41]. What Roehm et al. found was that program comprehension tool
support was rich and growing, but that in practice programmers did not use these
tools – the reality was that the tools assumed a different usage scenario than the
programmers were actually following. Change impact analysis tools may be in a
similar situation. Programmers may not do change impact analysis in the way that
the literature suggests. For example, it is possible that programmers implement
changes as quickly as possible, and repair negative effects of the change as they
occur, skipping change impact analysis. Or, it is possible that programmers are
simply unaware of the state-of-the-art techniques available.

In this paper, we present an empirical study of change impact analysis by
professional programmers. We conduct this study in two phases. In the first phase
of our study, we recruited nine programmers to read two bug reports from two
open-source systems, and repair the bugs by modifying the systems’ source code.
We recorded videos of the repair processes. The objective was to observe the
programmers’ behavior as they fixed the bug. We then analyzed this behavior to
determine whether the programmers used any tools for change impact analysis, and
if not, whether they performed change impact analysis through manual inspection.

In the second phase, we surveyed 35 programmers who had professional expe-
rience at different organizations. The intent of the survey was to determine the
knowledge that the programmers had of change impact analysis, and to query the
programmers about their current IA procedures. We asked knowledge questions
via an online survey, but we also present the programmers with an actual bug
report from an open-source system, along with screenshots of an IDE. The pro-
grammers clicked on the screenshots to select the components of the IDE that
they would use to repair the bug.

We designed three research objectives to answer the question whether pro-
grammers do change impact analysis. We will describe the research objectives in
Section 6. From the research objectives, we designed several research questions
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in each phase. By answering the research questions, we found evidence of a gap
between theory of change impact analysis and the practice. We came to this con-
clusion based on several findings, because the programmers did not know the term
“Change Impact Analysis” and they did not use change impact analysis tools.
Moreover, we found the programmers did static impact analysis before they made
changes and dynamic impact analysis after they made changes.

2 The Problem

The problem we target in this paper is a gap in the current literature regard-
ing how programmers accomplish change impact analysis (IA) in practice. During
code change activities (e.g., fixing a bug, adding a feature, etc.), it is generally
assumed that programmers conduct IA prior to modifying source code. A rich and
diverse set of tools has been created based on this assumption. However, there
is little empirical evidence confirming this assumption. While IA procedures are
recommended in textbooks and other educational resources, it is possible that pro-
grammers follow different strategies. For example, it is possible that programmers
make changes first based on intuition, and test the consequences of those changes.
This behavior would be in line with current literature surrounding “opportunistic”
programming and similar concepts [8,7,18,14], which are part of a broader con-
sensus that programmers only try to comprehend the minimum amount of source
code required to make a change [41,24,27,16].

This paper has a direct impact on the design of change impact analysis tools
for code change activities, because it improves the understanding of how program-
mers will use those tools. For example, if a majority of programmers do not do IA
prior to making changes, then tool support could potentially be directed to mon-
itoring the effects of changes already made, rather than predicting effects from
possible changes. This potential impact is not unprecedented, as similar implica-
tions have been discovered in other areas of software engineering, e.g., program
comprehension [41] and bug report authorship [20].

3 Background: Change Impact Analysis (IA)

Change impact analysis (IA) is a general process to identify elements that are
indirectly or directly affected by a change [30,52,6]. IA has two types of application
scenarios. The first application scenario is upfront. In requirement management,
given a specific change request, IA is to identify the files and the models that may
need to be modified for the requested change. A change request can be a bug report,
a request of adding a feature, etc. The second application scenario is in source
code change activities, such as debugging, refactoring, feature implementation,
etc. When programmers debug, they may do IA to find out whether a change
in code fix the bug. In refactoring, programmers may do IA to ensure that the
changes will not have any effect on the outputs of the program.

The following subsections will describe three terms related to IA: IA process,
IA techniques, and IA activities. We will also discuss the difference among the
three terms in Section 3.4.
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3.1 Classic IA Process

Petrenko and Rajlich [37] introduced an interactive IA process at the granularity
of all components. This process can be used in both application scenarios (in
requirement management and code change activities). Based on this interactive IA
process, we illustrated the IA process at the granularity of statements in Figure 1.
The objective of the IA process is to obtain a Changed Set, that is, the statements
that need to be changed. Ideally, the Changed Set will always contain just the
statements that must be changed. However, in practice, the Changed Set will not
always be accurate.

To begin doing IA, the programmers must identify a location to change. An
example of a location would be a statement of code. This statement is called an
initial change location. First, the programmers put the initial change location into
the Changed Set (Figure 1 Area a).

Second, the programmers follow different procedures to find code that is af-
fected by the Changed Set (Figure 1 Area b). For example, they may follow the
dependencies from the initial change location (we listed four possible strategies
in Section 3.2). Then, the programmers add the affected code into the Possible
Changed Set ( Figure 1 Area b). Note that the Propagation Set in Figure 1 Area
b will be defined later.

Third, the programmers look at every statement in the Possible Changed Set.
For each statement, if the programmers think the statement need to be updated,
they put this statement into the Changed Set (Figure 1 Area c). Otherwise, the
programmers decide whether the statement propagates the effects of the change,
such as changed values. If the statement propagates the effects to other statements,
the programmers put it into the Propagation Set (Figure 1 Area d).

Fourth, with the new Propagation Set and the updated Changed Set, the pro-
grammers start at Figure 1 Area b again. The programmers stop the IA process
when there are no more statements to be added into the Propagation Set and the
Changed Set. The output of IA is the Changed Set, that is, the statements that
need to be changed because of the initial change location.

3.2 IA Techniques

Although the IA process contains any phase described in Figure 1, current IA
techniques focus on automating the task in Figure 1 Area b, which is finding
the code that may be affected by a given statement. According to Li et al. [31],
IA techniques can be broadly categorized as: 1) static dependency analysis, 2)
dynamic execution information analysis, 3) software repository mining, 4) coupling
measurement, or 5) combined approaches.

Static dependency analysis typically does reachability analysis on a graph-
ical representation of a program derived from the source code [9], such as, call
graphs, control flow graphs, or dependency graphs. Hattori et al. [19] analyzes
reachability of a call graph, i.e. whether a method can be called by another method.
If a method can be called by another method, the first method can be affected by
the later one.

Dynamic execution information analysis uses data generated from the
execution of the programs, rather than only the source code [31]. There are different
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Fig. 1: The Process of Change Impact Analysis in the literature, described in
Section 3.1

types of execution data [28,35]. For example, Law and Rothermel use execution
traces of function calls [28]. The intuition is that the function called first may
affect the functions called later.

Software repository mining analyzes not only the source code and the
execution data, but also the logs of software version control systems. Many kinds
of logs can be used for IA [56,12]. For example, Zimmermann et al. [56] apply data
mining to changes made in the history to see what methods are usually changed
together.

Coupling measurement aims to calculate the degree of dependency between
any two of program modules, such as methods. This degree of dependency indicates
the possibility of one program module being affected by another module. The
majority of coupling metrics are based on interactions between two modules. For
example, Beszédes et al. [5] use metrics based on Execution-After relations [3].
Different from measuring the interaction between two modules, Poshyvanyk et
al. [38] proposed conceptual coupling using information retrieval on identifiers
and comments from code to measure relationship between two modules.

Combined approaches integrate multiple kinds of analyses to gain better
accuracy. For example, Breech et al. [9] combined static and dynamic approaches
to obtain higher precision. Another example is that Gethers et al. [17] integrate dy-
namic analysis and repository mining, in order to choose an appropriate technique
in a specific situation. Similarly, Kagdi et al. [21] integrate coupling measurement
with software repository mining.
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3.3 IA Activities

According to the Figure 1, in the scope of this paper, we define IA activities as the
actions that programmers do to find and understand the code that may belong to
the Possible Changed Set (Figure 1, Area b), the Propagation Set (Figure 1, Area
f ), or the Changed Set (Figure 1, Area e). By this definition, some examples of
IA activities are file navigation, source code reading, and call graphs examining.
In fact, any program comprehension activities are seen as IA activities in this
paper, because program comprehension is one possible way to do change impact
analysis. Note that we do not consider any program comprehension tool as an IA
tool, because their purpose is program comprehension in general. Similarly, we do
not consider IDE navigational functionalities as IA tools. However, they can be
used in IA activities.

An extreme example of IA activities is running programs. By running a pro-
gram and check its result, programmers may decide to continue the IA process
or not. If the result is correct, some programmers may feel confident to commit
the changes they made. If the result is incorrect, programmers know there is some
code need to be changed. If the value of the result is meaningful, programmers
may locate the code to be changed by the incorrect value.

3.4 IA Process, IA Techniques, and IA Activities

In this section, we describe the differences among the IA process, IA techniques
and IA activities. The IA process is a general procedure defined in academia that
programmers do to find consequences of a source code change. We restrict our dis-
cussion of the consequences within the consequences in source code, i.e. the source
code locations that need to be changed because of the initial change location. Note
that IA process can be started with an initial change location with or without a
specific change, which means, programmers can do IA before or after they make
a change. We do not make any assumption about whether programmers do IA
before they make a change.

IA techniques are designed specifically for a task in the IA process, which is
Figure 1 Area b. There are IA techniques for post-change, which means that they
assume programmers do IA after they make a change. There are also IA techniques
for pre-change, which means that they can work without a specific change.

Any activity, whether they occur before or after programmers make a change,
if the activity can help programmers in any phase in Figure 1, we consider they are
IA activities. IA activities are not necessarily related to IA techniques. IA activities
can occur in various tasks, such as debugging, refactoring, reverse engineering, and
effort estimation.

4 Background: Debugging

In this section, we describe a general debugging process based on the scientific
debugging method introduced by Zeller [55]. The debugging process is shown in
Figure 2. Given a bug report, first, programmers reproduce the bug and observe the
failure. Then, based on the observation, programmers create a hypothesis about
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the cause of the failure. In the next step, programmers test the hypothesis. The
methods of testing a hypothesis are various. Sometimes, programmers can print a
value at a specific location to determine whether to reject the hypothesis or not.
Often, programmers may make a change to the source code and observe whether
the program runs as expected. If the observed value is not expected or the program
gives unexpected result, it means the hypothesis is rejected. If the hypothesis is
rejected, programmers need to make a new hypothesis about the failure cause. If
the hypothesis is supported and the bug is fixed, programmers stop the debugging
process. If the hypothesis is supported, but the bug is not fixed, programmers
refine the hypothesis and test it again.

An example of a hypothesis about a failure cause is “If variable X ’s value at
line 10 is 1, the program should have a correct output.” Based on the hypothesis,
programmers added a line at line 10 which assigns 1 to X. Then, programmers run
the program to test the hypothesis. If the failure is gone, this test supports the
hypothesis. If there is a failure, the hypothesis is rejected. The hypothesis being
supported does not necessarily mean that the bug is fixed. For example, always
assigning value one to X at line 10 may cause errors in other tests, and there may
be a deeper cause for the faulty status of X.

The steps in the process of debugging may be skipped by some programmers.
For example, programmers may skip reproducing the bug and create a hypothesis
based on a bug report. Some hypotheses are not necessarily about what the failure
cause is. They can be any hypothesis that is related to the program and help
programmers narrow down the problems.

Note that fault localization falls into the step where programmers try to make
hypotheses about the failure cause. In this case, the hypotheses are about the
locations of faults. Regression testing can be in the beginning and in the end of a
debugging process. Regression testing can reveal a bug, which leads to a bug report.
The bug report becomes the beginning of a debugging process. Additionally, the
results of regression testing may help programmers form hypotheses about the
bugs. After programmers fix a bug, regression testing can help programmers ensure
the quality of the fix, which occurs in the end of debugging.

Similarly, IA can occur in different phases in the debugging process. Program-
mers can do IA during fault localization. If a source code location affects the result,
programmers may create a hypothesis that this location is a faulty location. Pro-
grammers may do IA when they test hypotheses. For example, in order to test
the hypothesis “source code line 10 should not affect the output of the program”,
programmers need to investigate the effects of any change in line 10, which is
considered as an IA process.

5 Related Work

The section will cover the empirical studies about IA in general to present the
current status of IA and IA techniques. Then, we will discuss the empirical studies
in IA practices on which we base our study design. Thirdly, we will introduce
the related work in tool adoption because we aim to look for the reason why
programmers do or do not do IA and help IA techniques get adopted in practice.
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Fig. 2: The process of debugging according to the literature (see Section 4). This
is the process that we expect our participants to follow in our studies.

5.1 Empirical Studies in IA

Many empirical studies are conducted to study software changes, their sizes and
how to predict changes. Gethers et al. [17] created four benchmarks for IA from
four open source Java systems. In the total of 277 change requests, half of them
were addressed by the changes within five methods. 75% of the change requests
were addressed by changing less than 13 methods. Gethers et al. introduced an
integrated impact analysis approach including textual information analysis, evo-
lutionary information analysis, and execution information analysis. The highest
precision reported is 18% and the highest recall reported is 75%. Ye et al. [54]
created the benchmarks from five Java projects. The number of bug reports they
collected for each benchmark ranges from 593 to 6,495. The maximum number
of the files fixed for a bug report in each benchmark ranges from 87 to 587. But
the median number of the files fixed in any benchmark ranges from one to three.
For Eclipse Platform and Tomcat projects, their recommending system includes
at least one fixed file in the top ten ranked files in 70% of the bug reports.

For changes not in source code, McIntosh et al. [33] mined the relationship
between source code changes and build changes in four large systems. They found
that only 4% to 26% of the source code changes require build changes. Using code
change characteristics, McIntosh et al. developed classifiers to explain when build
changes are necessary.

There are also many empirical studies evaluating different types of IA tech-
niques. Acharya et al. [1] did an empirical study of IA based on static program
slicing in ABB. With the high setting defined in their paper, on 147 changes they
ran, about 45% had more than 300,000 lines of code, and about 46% had less than
10,000 lines of code. Wu et al. [53] explored the dependencies among programs and
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other binaries. Without simplifying the dependency graph, a dependency graph
for wget has 26 nodes, which means there are 25 binaries interacted with wget.

Rungta et al. [44] introduced a change impact analysis technique, iDiSE, and
applied this technique to tcas. In the 16 version changes they presented in the pa-
per, at least 57% of the constraints generated in the changed version are impacted
by the change. Dam and Ghose [13] implemented an IA technique for agent sys-
tems. They did an experiment on two agent systems developed to compete at the
Multi-Agent Programming Contest. The precision ranges from 25% to 50% and
the highest recall is 65%. Parande and Koru [36] studied five KOffice products and
found that dependencies concentrate more on smaller modules.

5.2 Empirical Studies in IA Practice

De Souza [47] went to two large software teams, and studied the actual IA ap-
proaches – team strategies that handle software artifact-level dependencies. From
this study, De Souza et al. introduced impact management for team management
of dependencies and changes, which models how developers inform impacts to
others or prevent impacts from others. The difference between our study and De
Souza’s study is that our study focused on how programmers do IA individually
and their study focused on how programmers communicate IA results with others.

In order to discover important issues in IA, Roveg̊ard et al. [42] did an empir-
ical study at Ericsson AB, Sweden. They interviewed 18 people in different orga-
nizational levels. Roveg̊ard et al. mapped three organizational levels in software
engineering – technical, resource and product – to three levels in decision-making
– operative, tactical, strategic levels. They found important IA issues from both
organizational and personal views. For example, the issue “affected parties are
overlooked” is seen as a high priority both in organizational and personal view.
They also found that personal views affect organizational views on IA issues. Their
study found the important IA questions while our study looks for how program-
mers do IA. Tao et al. [50] did a large-scale online survey and follow-up email
interviews in Microsoft. From the study, they also identified a series of questions
about understanding changes.

There are several empirical studies on individuals in software engineering. To
study how programmers navigate through source code while they debug, Lawrance et
al. [29] recruited 12 programmers from IBM, and asked the programmers to debug
an open-source project, RSSOwl. Lawrance et al. required the programmers to
“think aloud” when they debugged, and recorded videos and audios of their de-
bugging process. Based on the videos and audios, Lawrance et al. investigated how
information foraging theory is applied to the navigation behaviors of programmers.
Our work has a similar approach with the one of Lawrance et al. However, their
work is to study the debugging process, and our goal is to study change impact
analysis in the context of debugging.

Similar to our study, Wetzlmaier and Ramler [51] did a study on individual
behaviors on IA. Their topic is “How well do experienced developers estimate
changes?”. They found that the estimation of the developers is inaccurate. The
difference between their study and our study is that their study finds out the
accuracy of IA while we want to finds out whether and how developers do IA.
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5.3 Studies in Tool Adoption

Storey [48] reviewed the tools in program comprehension based on cognitive the-
ories. In this review, Storey identified six aspects of tool support for program
comprehension: documentation, browsing and navigation support, searching and
querying, multiple views, context-driven views, and cognitive support. In 1997,
Storey et al. [49] did a study of 30 programmers using three tools to solve some
high-level program comprehension tasks. Based on their observation, they be-
lieve that the tools should support for different comprehension strategies, such
as, bottom-up [45] and top-down [11].

Bassil et al. [4] did a survey about software visualization tools with more than
100 participants. They found in general the participants were satisfied with the
current software visualization tools. In the data collected, the functionality of
searching for graphical and/or textual elements is rated as the most useful one in
visualization tools. In terms of practical aspects of visualization tools, the reliabil-
ity and ease of using the tools are rated as the two most important aspects. Kienle
and Müller [22] did a literature survey about requirements of visualization tools.
They identified seven quality attributes including usability, and seven functional
requirements including views and search.

6 Empirical Study Design Overview

The objective of this paper is to begin to answer the question do programmers do
change impact analysis? In particular, we want to study whether programmers
do IA when they do code change activities. Towards the problem we stated in
Section 2, we designed three research objectives.

Objective1 What knowledge do programmers have of research activities in IA?
Objective2 What technologies do programmers use to do IA if they do any?
Objective3 At what phases of debugging, do programmers do IA if they do any?

The first objective helps us to answer whether there is a gap between research
and industry. In studying the second object, if we find technologies used for IA,
it is not only the evidence of programmers doing IA, it also provides information
about the IA process in practice. In studying the third object, if we find evidence
that they do IA before they make changes, this will be the empirical evidence for
the assumption of various IA tools.

We target the three research objectives with a “depth” study and a “breadth”
study of programmer behavior. In the “depth” study we recorded the behavior of
nine programmers repairing actual bugs in source code. The “breadth” study is
a survey of 35 programmers. We designed four research questions in the in-depth
study and five research questions in the breadth study. We illustrate the overview
of the objectives and research questions in Figure 3.

7 In-depth Study Design

This section will describe our in-depth study, in which we hired programmers
to solve actual bugs in software. Following, we will cover our research questions,
methodology, subject applications, participants, and threats to validity.
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Objective 3: When 
programmers do IA?
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use any IA tools?
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Fig. 3: All the research questions are introduced in Sections 7.1 and 10.1. In the
in-depth study, RQ1 helps to answer Objective1 and Objective2. RQ2, RQ3, and
RQ4 helps to answer Objective3. In the breadth study, RQ5 and RQ6 helps to
answer Objective1. RQ7, RQ8, and RQ9 helps to answer Objective2.
RQ3: How long do programmers take, how many files do they visit, and how many
times do they use IDE functionalities between the first time they read a change
location and the first time they alter the change location? RQ4: How long do
programmers take, how many files do they visit, and how many times do they use
IDE functionalities between the first time they alter code and the first time they
run the altered code?

7.1 Research Questions

In this section, we have specified research questions to study the specific measur-
able behaviors related to the research objectives. We pose the following Research
Questions (RQs) towards our objective of determining whether programmers do
IA. We formulate these RQs with the idea of recording the actual behavior of
programmers during debugging.

RQ1 Do programmers use any IA tools?
RQ2 Do programmers navigate to dependents or dependencies of the first section

of code they read?
RQ3 How long do programmers take, how many files do they visit, and how many

times do they use IDE functionalities to navigate dependencies between the
first time they read a change location and the first time they alter the change
location?

RQ4 How long do programmers take, how many files do they visit, and how many
times do they use IDE functionalities to navigate dependencies between the
first time they alter code and the first time they run the altered code?

RQ1 is for Objective1 and Objective2. If programmers use IA tools, this indi-
cates that programmers know the concept of IA. Using tool or not is an evidence
of how programmers do IA. The rationale behind RQ2 is that the first section of
code the programmers read is the beginning of the debugging process. If a pro-



12 Siyuan Jiang et al.

grammer reads code along the dependencies of that code, we think this indicates
programmers doing IA in the beginning of debugging. So RQ2 helps to answer
Objective3. Similarly, RQ3 and RQ4 are for Objective3, too. The more activities
programmers do before or after they make a change, the stronger is the evidence
of programmers doing IA during the corresponding period.

7.2 Methodology

We followed an observational study methodology [2], under guidelines for case
studies recommended by Runeson et al. [43] and Robillard et al. [40]. Our overall
procedure is as follows.

1. Identify bug reports. We identified two bug reports in two different open
source programs.

2. Set up development environment in a virtual machine (VM). For each
bug report, we built a VM with Ubuntu 14.04 as the guest operating system.
Inside the VM, we installed Eclipse and set up the open source program inside
Eclipse. We set up the development environment inside a VM so that we can
send the environment to the participants who cannot be in our lab.

3. Install recording software in the VM. We installed SimpleScreenRecorder1

inside the VMs to record videos of the screens.
4. Conduct study with participants. For each participant, we gave her the

two bug reports. In total, we obtained two videos from each participant. In
this study, we do not introduce IA concept to the participants to minimize the
bias. There are ten participants. For seven participants, we hired them for one
hour per bug. If they are not able to fix one bug in one hour, they can give up
or continue at will. For the remaining three participants, we hired them to fix
the bugs, so there is no time limitation. To minimize the bias of our working
setting, we explicitly asked all the ten participants to install any plugin or tools
that they used in their normal working environment.

5. Complete study. We repeated step 4 for ten participants. For four partic-
ipants that did experiments in our lab, one author was present during the
study to assist with technical problems, but that author did not communicate
with the participants about the bug or code. The author sat away from the
participants and did not watch them, to avoid observer bias. For the other par-
ticipants who did the experiments remotely, the author was available online for
potential technical problems.

7.3 Subject Applications

The two subject applications we used in our study are “PDF Split and Merge”
(PdfSam)2 and Raptor3. In each Java program, we chose one bug report for our
study. The sizes of the programs are listed in Table 1. We chose these projects
because they are real, of non-trivial size, and the purposes of the projects are clear

1 http://www.maartenbaert.be/simplescreenrecorder/
2 http://www.pdfsam.org/
3 https://code.google.com/p/raptor-chess-interface/

http://www.maartenbaert.be/simplescreenrecorder/
http://www.pdfsam.org/
https://code.google.com/p/raptor-chess-interface/
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Table 1: two open-source programs used in our study. KLOC reported with all
comments removed.

Methods KLOC Java Files

PdfSam 2686 31.2 316
Raptor 1136 13.1 123

and easy to understand. We chose the two bug reports because they were fixed
and can be easily understood by the programmers who do not know the programs.

With each bug report, we presented to the participants some information to let
them know the program and the bug faster and easier. The information includes
the purpose of the program, the entry point of the program, an input of the
program that reveals the bug. For the seven participants who only have one hour,
we also provided a suggested fix because of two reasons. One reason is that it
took us about 2 hours to understand the bug and locate related source code. We
do not want participants spend all the time in understanding the application and
have not time changing anything in one hour. The second reason is that when
programmers do their daily job, they often have some ideas of where might be the
problem. Therefore, giving a suggested fix matches this scenario. Note that we did
not provide the suggested fix for the other three participants who were required
to fix the bugs no matter how much time they spend.

7.3.1 PdfSam and the Subject Bug

PdfSam is a PDF file editor. The bug we chose (id: 100) was reported in June
2014. A user reported that PdfSam failed to rotate a PDF file. The actual fix
is shown in Figures 4 and 5. The cause of the bug was that the developer used
RandomAccessF ileOrArray to load pdf files into memory. In this API function,
some information about pdf file is lost. This lost information caused the rota-
tion not being applied to a new pdf file. RandomAccessF ileOrArray is called in
method readerFor. To fix the bug, the developer added another method called
fullReaderFor. The fullReaderFor is the same with readerFor except fullReaderFor
calls FileInputStream instead of RandomAccessF ileOrArray. Then, inside the
method that handles rotation, the developer replaced readerFor with fullReaderFor.
The fix will only affect PdfSam when the pdf files are requested to be rotated. Our
suggested fix is directly replacing RandomAccessF ileOrArray with FileInputStream
inside method readerFor. The suggested fix potentially affects all the methods
that calls readerFor. Additionally, the participants do not know whether the sug-
gested fix works.

7.3.2 Raptor and the Subject Bug

Raptor is a graphical user interface for a Chess Server (FICS4). The bug re-
port we used (id: 1) was reported by a developer of this program in Septem-
ber 2009. The developer reported that the clocks did not tick down when they
should. The actual fix is shown in Figures 6 and 7. The reason for the bug is that

4 http://www.freechess.org/

http://www.freechess.org/
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public class RotateCmdExecutor{ 

  ... 

  public void execute(AbstractParsedCommand parsedCommand){ 

    pdfReader = PdfUtility.readerFor(fileList[i]); 

}} 

public final class PdfUtility { 

  ... 

  public static PdfReader readerFor(PdfFile file){ 

PdfReader reader = new PdfReader( 

       new RandomAccessFileOrArray(file.getFile().getAbsolutePath()), …); 

[code block 1] 

return reader;} 

} 

Fig. 4: The original code before the fix in PdfSam.

public class RotateCmdExecutor{ 

  ... 

  public void execute(AbstractParsedCommand parsedCommand){ 

    pdfReader = PdfUtility.fullReaderFor(fileList[i]); 

}} 

 

public final class PdfUtility { 

  ... 

  public static PdfReader readerFor(PdfFile file){ 

PdfReader reader = new PdfReader( 

       new RandomAccessFileOrArray(file.getFile().getAbsolutePath()), …); 

    unethical(reader); 

    return reader;} 

 

  public static PdfReader fullReaderFor(PdfFile file) ... { 

    PdfReader reader = new PdfReader(new FileInputStream(file.getFile()), …); 

    unethical(reader); 

    return reader;} 

   

  private static void unethical(PdfReader reader) ... { 

    [code block 1]} 

} 

Fig. 5: The code after the actual fix in PdfSam.

the states of the game were not correctly updated. The cause is in the method
updateNonPositionF ields, which is supposed to update the states of the game.
The problem is that the game’s state is not updated with IS CLOCK TICKING STATE
when the game is at EXAMINING STATE.

To fix this bug, a developer added a patch in the method updateNonPositionF ields.
By adding an if statement in updateNonPositionF ields, Raptor is forced to up-
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public class FicsUtils implements GameConstants { 

  public static void updateNonPositionFields(Game game, Style12Message message) { 

    switch (message.relation) { 

      case Style12Message.EXAMINING_GAME_RELATION: 

        game.setState(Game.EXAMINING_STATE); 

        break; 

      case … 

      break; 

} 

  } 
} 

Fig. 6: The original code before the fix in Raptor.

public class FicsUtils implements GameConstants { 

  public static void updateNonPositionFields(Game game, Style12Message message) { 

    switch (message.relation) { 

      case Style12Message.EXAMINING_GAME_RELATION: 

        game.setState(Game.EXAMINING_STATE); 

        break; 

      case … 

        break;} 

    if (message.isClockTicking) { 

    game.addState(Game.IS_CLOCK_TICKING_STATE); 

    } else { 

        game.clearState(Game.IS_CLOCK_TICKING_STATE); 

} 

  } 
} 

Fig. 7: The code after the actual fix in Raptor.

dated the IS CLOCK TICKING STATE every time updateNonPositionF ields
is called. The suggested fix we provided is a change that committed in the reposi-
tory with this fix. The change is related to updating states at EXAMINING STATE,
but the change does not fix the bug. The change is in Class ExamineController,
which is the chess board controller when the game is in EXAMINING STATE.

7.4 Participants

We recruited seven programmers for one hour per bug in our study. One participant
was not familiar with Eclipse, so we discarded the videos of the participant. The
remaining six participants are listed as Participants 1 to 6 in Table 2. Additionally,
we hired another three programmers to fix the bugs with no time limit and no
suggested fixes, who are listed as Participants 7 to 9 in Table 2. Most of the
participants we hired are experienced programmers. The average experience level
of the nine programmers is 10 years on paid positions. Due to time and resource
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Table 2: Participants in In-depth study

Java Experience Years Exper. Organization
Participant 1 2 4 Ph.D. program

University of Notre Dame
Participant 2 0 (5 years in OO) 5 Computing resource center

University of Notre Dame
Participant 3 12+ 12+ withheld for privacy
Participant 4 10 5 Ph.D. program

University of Notre Dame
Participant 5 15 30 withheld for privacy
Participant 6 7 9 Ph.D. program

Peking University
Participant 7 5 4 A Bank IT department
Participant 8 5 5 withheld for privacy
Participant 9 12 12 A financial service

software company

limits, we decided not to hire more programmers. Table 2 list the participants and
their experience.

7.5 Threats to Validity

Like any study, our study has threats to validity. First, the two programs in the
study may not be representative. We mitigate this threat by choosing two types of
programs. One program is an online application, and the other is offline. Therefore,
our results are not limited in one program type. Second, the two bug reports may
not be representative. We mitigate this threat by choosing real bugs from the real
repositories, so that the bugs are at least realistic and may happen in practice.
Third, we chose Eclipse as the working environment, which may affect the behavior
of the programmers in debugging. However, we think Eclipse is very widely used,
and can represent general IDEs.

Fourth, the participants are not the developers of the selected programs. There-
fore, their behavior may differ from the real developers of the applications. We
mitigate this threat by offering some information about the programs and the
bugs, see Sections 7.2. Although the participants have some information about
the application and the bug, the participants still may do more activities for pro-
gram comprehension than the real developers of the applications. So there may be
more IA activities done in the study than in the real world. Also, three partici-
pants are Ph.D. students, whose behavior may be different from the programmers
in industry.

7.6 Reproducibility

To ensure reproducibility by independent researchers, we put all the data via
an online appendix, including the VM images, the videos, the logged activity
sequences, the recognized change locations, the scripts for data analysis, and the
results:
http://nd.edu/~sjiang1/IA-study.htm

http://nd.edu/~sjiang1/IA-study.htm
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8 In-Depth Study Data Collection

Before we processed the videos, we discarded the two videos of one participant
because he was not familiar with Eclipse. Then, we processed the remaining 18
videos as follows.

8.1 Recorded activities

We watched the videos and recorded all activities with time-stamps, such as “open
a file”, “edit a line of source code”, and other activities in IDE. Additionally, if an
activity modifies source code in any way, we also recorded the file name and the
line number that the activity modifies. For a complete list of the activities, please
refer to the online appendix in Section 7.6. All the activities we recorded in a video
formed one sequence of activities. For 18 videos, we obtained 18 sequences.

8.2 Found change locations

We found the change locations in the sequences. To find change locations, we
first found all the activities that modify source code in the sequences. We re-
moved the modifications that do not have any impact. These modification in-
cludes: adding/deleting comments, formatting (adding/deleting spaces and lines),
modifications that were undid immediately (for example, in the middle of the
modification, the programmer realized that this modification would not work and
undid the whole modification.) It is possible that there are some changes that may
seem to have impacts, but actually they do not have any impact. We took these
changes into account, because without inspection, programmers do not know that
the changes have no impact either.

Besides the changes that have no impact, we also excluded a special case of the
modifications, which is undo. Often the programmers undid changes they made
because of the two reasons: 1) they ran the program and the change did not have
expected impact on the output of the program, and 2) the changes are made ac-
cidentally. We ignored these “undo” changes because their impacts are discarding
the impacts of the changes, which programmers may know about.

There are another two special changes that we did not take into account. One
programmer created a new test project. The other programmer created a new test
class. Because our scope of the changes is limited to the changes to the existing
code, we excluded these two changes in our results.

From the remaining modifications, we collected the file names and the line
numbers. If some lines of code are successive in the same file, we grouped these
lines into one “change location”. Even the lines of code that were modified at
different times, we grouped them into one “change location” because these changes
are related to each other. In one video, a programmer may have multiple change
locations.
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Table 3: The Time Labels

Label Description

FReT The first time that a programmer reads a change location.*
FMT The first time that a programmer modifies a change location.
FRT The first time that a programmer runs the program after

FMT .
LMT The last time that a programmer modifies a change location.
LRT The first time that a programmer runs the program after

LMT .

* Note that it is impossible to know the change location before the
location is altered. So we found FMT first, then we found FReT .

Table 4: Eclipse navigational functionalities

Category Name Eclipse Actions Description

Call hierarchy open call hierarchy show the callers of a method
Type hierarchy open type hierarchy show the supertype/subtype of a class
Declaration open declaration open the definition of a class/method/variable
Implementation open implementation open the implementation of a method

open super implementation open the super implementation of a method
References find references show all the references in Workspace/Project

of a class/method/variable.
Search text search search the exact text in Workspace/Project

java search search all the occurances of a java element
in Workspace/Project

text find find the exact text in the current file

8.3 Found important times

First, we logged the first times programmers read a change location (FReT ).
Then, we logged the times when each change location was edited. Programmers
may modify the location multiple times and the number of modifications varies.
For our research questions, we only logged the first modification time (FMT ) and
the last modification time (LMT ). Furthermore, for each modification time, we
logged the first time that the program was executed after that modification (FRT
and LRT ). In summary, Table 3 lists all the time labels we marked.

8.4 Measured distances

We measured elapsed time in seconds, the number of files visited, and the number
of times that Eclipse functionality is used between three periods of time, which are
from FReT to FMT , FMT to FRT , and LMT to LRT . We counted all the IDE
functionalities that help programmers navigate dependencies of a code element,
including “open call hierarchy of” a method, “open declaration of” a class, and
so on. We listed all the navigational functionalities in Table 4. Note that although
“search” is listed in Table 4, “search” is not counted as the IDE functionality
that help programmers navigate dependencies, so we did not count “search” in
answering our research questions.



Do Programmers do Change Impact Analysis? 19

Table 5: Participants in In-depth study

PdfSam Raptor

Participant 1 fixed not fixed with a major progress
Participant 2 fixed not fixed with a major progress
Participant 3 fixed not fixed with a major progress
Participant 4 fixed not fixed
Participant 5 fixed not fixed
Participant 6 fixed not fixed with a major progress
Participant 7 fixed fixed
Participant 8 fixed + refactored fixed
Participant 9 fixed fixed

9 In-Depth Study Results

In this section, we will describe the quality of the patches that our participants
created. Then, we will begin to answer the question do programmers do change
impact analysis? From a high level, we found the evidence that the programmers
did IA but did not use IA tools: 1) the programmers did not use IA tools; 2)
the programmers did IA before they made changes; 2) the programmers ran the
programs after they made changes. In the rest of the sections, we will explain the
statistical details of how we came to this conclusion.

9.1 Quality of Patches

For PdfSam, Participants 1 to 6 applied the exact patch of the suggested fix to the
program. Participant 7 figured out a way to fix the problem in a different method.
Participant 8 made a similar patch to the actual fix, so this patch has less impact
than the other patches. Participant 9 applied the exact patch of the suggested fix.

For Raptor, Participant 1 to 6 did not fix the problem. However, Participants
1, 2, 3, and 6 made a major progress where the clocks began to tick down but
at a wrong time. Participants 7 and 8 made similar patches to the actual fix.
Participant 9 also made a similar patch, but s/he made sure the new code is only
accessed when the game is under EXAMINING STATE. So the last patch has
less impact than the other patches.

9.2 Example Result

This section will explain the result for a change location in PdfSam as an example,
see Table 6. The change location is at line 94-95 in the file PdfUtility.java.

From Table 6, the participant read only one file between the first time s/he read
the change location and the first time s/he altered the change location (“FReT
to FMT” in Table 6). This file is the file containing the change location. This
indicates he did not do IA across different files before s/he made the change.
Additionally, there is no Eclipse functionality used to navigate source code between
FReT and FMT , which further indicates the programmer did not do much IA in
this period within the file. For FMT to FRT and LMT to LRT , the numbers are
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Table 6: The Measured Distances for One Change Location in PdfSam. See Sec-
tion 9.2 for the description of this example.

FReT to FMT FMT to FRT LMT to LRT

Time in seconds 4 14 16
# of Files 1 1 1
# of Dep. Navs. 0 0 0

Table 7: The overall time in seconds, the number of visited files, and the number
of uses of IDE functionalities for 18 debugging session

Participant Id 1 2 3 4 5 6 7 8 9

Pdfsam
Time in Sec. 7800 3051 3314 453 3544 1555 4295 13367 6168
# of Files 33 15 6 2 13 9 12 34 24
# of Func. 15 21 4 0 36 21 38 46 37

Raptor
Time in Sec. 3119 4537 3352 3543 4941 4081 2809 6546 5343
# of Files 15 24 6 6 23 9 15 21 24
# of Func. 18 30 1 1 46 60 23 34 33

same, which indicates the programmer did not do much IA before s/he ran the
program.

9.3 Aggregate Result

From the 18 videos, we found 31 change locations. Table 7 listed the total time
for each video, the number of visited files, and the number of the times that IDE
functionalities were used. The average distances of the 31 changes in three time
periods are presented in Table 8. We also presented the average results for each
bug in Tables 9 and 10.

A big difference between Tables 9 and 10, the participants without the sug-
gested fixes spent more time in FReT and FMT in PdfSam than in Raptor.
However, in the same period of time, the number of files visited and the number of
uses of functionalities are similar in PdfSam and Raptor. This indicates that the
participants without the suggested fixes read similar amount of code before they
made the changes, but they spent more time in reading the code in PdfSam.

For Figures 8, 9 and 10, each figure corresponds to a metric we measured,
i.e., time length in seconds, the number of files visited, and the number of IDE
functionality uses. There are three boxplots in each figure. Each boxplot represent
a time period, that is FReT to FMT , FMT to FRT and LMT to LRT . In
general, we can see the programmers put the most effort before they make any
modification for a change location, and they put the least effort after they make
changes and before they run the programs.
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Table 8: The Average Distances for the 31 Changes. The median distances are in
parentheses.

FReT to FMT FMT to FRT LMT to LRT

Time in Sec.
With Suggested Fix 472 (137) 119 (48) 29 (17)
No Suggested Fix 1729 (1247) 53 (46) 19 (19)
All 877 (416) 97 (46) 27 (17)

# of Files
With Suggested Fix 4 (3) 2 (2) 2 (2)
No Suggested Fix 10 (9) 1 (1) 2 (2)
All 6 (4) 2 (1) 2 (2)

# of Func.
With Suggested Fix 4 (0) 2 (0) 0 (0)
No Suggested Fix 11 (9) 0 (0) 0 (0)
All 6 (1) 1 (0) 0 (0)

Table 9: The Average Distances for the 17 Changes for PdfSam. The median
distances are in parentheses.

FReT to FMT FMT to FRT LMT to LRT

Time in Sec.
With Suggested Fix 316 (226) 88 (56) 40 (20)
No Suggested Fix 1979 (1633) 39 (40) 19 (19)
All 903 (416) 71 (40) 31 (20)

# of Files
With Suggested Fix 4 (4) 2 (2) 2 (2)
No Suggested Fix 10 (7) 1 (1) 2 (2)
All 6 (4) 2 (1) 2 (2)

# of Func.
With Suggested Fix 2 (1) 1 (0) 0 (0)
No Suggested Fix 11 (7) 0 (0) 0 (0)
All 5 (1) 1 (0) 0 (0)

Table 10: The Average Distances for the 14 Changes for Raptor. The median
distances are in parentheses.

FReT to FMT FMT to FRT LMT to LRT

Time in Sec.
With Suggested Fix 643 (133) 156 (40) 21 (9)
No Suggested Fix 1354 (1234) 74 (67) n/a
All 846 (275) 131 (64) 21 (9)

# of Files
With Suggested Fix 5 (1) 2 (1) 1 (1)
No Suggested Fix 9 (9) 1 (1) n/a
All 6 (3) 2 (1) 1 (1)

# of Func.
With Suggested Fix 7 (0) 2 (0) 0 (0)
No Suggested Fix 10 (10) 0 (0) n/a
All 8 (1) 2 (0) 0 (0)

9.4 Difference between the study with the suggested fixes and the study without
the suggested fixes

In Table 5, Participants 1 to 6 fixed the PdfSam’s bug by using our suggested fix.
But for Raptor, all the participants fail to fix the bug. This indicates that the
quality of the suggested fixes affects whether the participants could fix the bugs.
If the suggested fix is similar to the actual fix, the participants can easily fix the
bug without extra effort to refactor the program for better code quality. If the
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Fig. 9: The distribution of the number of visited files

suggested fix is not in the code where the actual fix is, the participants cannot fix
the bug in a limited time.

Participants 7, 8 and 9 fixed both the bugs in PdfSam and Raptor, because
they were asked to fix the bugs to finish the task without a time limit. Note that
only Participant 8 refactored PdfSam’s code like the actual fix in the repository.

In Tables 8, 9, and 10, the biggest difference between Participants 1-6 and
Participants 7-9 is during FReT to FMT . Participants 7-9 spent more time, visited
more files and used Eclipse functionality more times before they modify a location.
The difference is understandable because the participants have less information (no
suggested fixes) than Participants 1 to 6.
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Fig. 10: The distribution of the number of IDE functionality uses.

9.5 RQ1: Do programmers use any IA tools?

No programmer used any IA tools except code navigation functional-
ities in Eclipse. Note that we explicitly told participants that they can install
any plugin. Our interpretation is that the programmers tend not to use IA tools.
One possible reason is that for fine-grained IA, such as statement-level IA, pro-
grammers often do it by comprehending code themselves. For coarse-level IA, such
as method-level IA, the code navigation functionalities, such as “open call hierar-
chy”, are enough. Not using IA tools indicate that programmers are not familiar
with the techniques proposed for IA tasks.

9.6 RQ2: Do programmers navigate to the dependencies or the dependents of the
first section of code they read?

In the 11 out of 18 debugging sessions, the programmers in our study did not
navigate to dependents and dependencies of the first section of code that they
read. Therefore, we think the programmers do not prioritize IA at the beginning
of the debugging process, which should be fault localization. In 11 of the 18 videos,
the programmers jumped from the first file they read to the second file.

In the remaining seven videos, we found evidence that the programmers do IA.
Most of them do dynamic IA by following the execution. They ran the program
with a debugger step by step. Two of them did static IA by using “open declaration
of” a method call in the first file.
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9.7 RQ3: How long do programmers take, how many files do they visit, and how
many times do they use IDE functionalities between the times of the first read
and the first modification?

Between the first read (FReT ) and the first modification (FMT ) of a change
location, the programmers had more code navigations than they did in the other
periods, see Table 8. We think this indicates programmers doing IA in a static
way. The main task in this period is to decide whether or how the change location
should be changed. To do this task, the programmers need to understand what
the change location affects.

When we did not provide the suggested fixes, the programmers visited an
average of ten files. However, in the videos that we provided the suggested fixes,
the number of visited files in this period is small. On average, the programmers only
navigated less than four files. By comparing these two results, our interpretation
is that the programmers tend to try changing the code as soon as possible with
the minimum amount of program comprehension.

In Figure 9, most of the programmers read fewer than twelve files. Our inter-
pretation is that reading twelve files should be sufficient for programmers figure
out an initial change for a location. The outliers at FReT to FMT in Figures 8,
9 and 10 correspond to four change locations.

For two change locations, the programmers altered other change locations first
after they read the change location. For another outlier, the programmer com-
prehended the entire program before she made any modification. The activities
between the first read and the first modification include the tasks to comprehend
the overall structure of the program. These two outliers are similar to the cases
of inattentional blindness reported by Robillard et al. [40], which is the situation
where programmers do not intend to change a location when they read the location
at the first time.

For the fourth outlier, we believe this is the case where the programmer did
extensive IA (18 files visited, 22 times of using IDE functionalities) after s/he
locate this line and before s/he make a change to the location.

9.8 RQ4: How long do programmers take, how many files do they visit, and how
many times do they use IDE functionalities between the times of modification
and the first run of the altered code?

The programmers in our study almost always ran the programs imme-
diately after they made the last modification of a change location. In
75% of the cases, the programmers navigated to no more than two files (including
the files that contain the change locations) in Figure 9 during both LMT to LRT
and FMT to FRT .

The numbers of uses of the Eclipse navigational functionalities are similar in
the two periods, too. FMT to FRT on average have one navigational functionality
used. And in LMT to LRT , there is almost no functionality used. Our interpreta-
tion is that the programmers tend to run programs immediately once they made
the changes.

The average time between FMT and FRT is overall 97 seconds. Because the
time we recorded for modifications is the beginning time of the modifications, the
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period between FMT and FRT includes the time that the programmers spent on
actually changing code.

The outliers at FMT to FRT in Figures 8 and 9 correspond to two change
locations. For one change location, the first edit of the location is not intended
to change the program, but to help the programmer to “open declaration of”
a method. The call of the method was commented out, in order to use Eclipse
navigational functionality, the programmer uncommentted this code, so that s/he
could click to the declaration of the method. For the other outlier, the programmer
navigated to other places and inserted some log function calls, so that when the
program runs, it would output more useful information. This case shows that the
programmer did IA after s/he made the change.

9.9 Qualitative Results

For the last three participants that we hired to fix the bugs, we also did interviews
after they finished their jobs. The interviews were conducted in an online chatting
tool, which is provided by the online hiring platform we used.

9.9.1 knowledge of IA

One participant reported that he knew the term, “but have not seen anything
related to that”. In his understanding, he thought IA is the question about “what
would be the impact of some change that I want to make”. The other two partici-
pants do not know IA, but said they did IA after we introduced IA to them. IA is
introduced as “Change-Impact Analysis is a task of finding the source code which
is affected by the source-code change that you are going to make.”

When the programmers were asked about IA in their daily work, they often
refers to post-change IA. “I always try to understand how I can influence the code.
If I’m uncertain about my changes I can make a list of influenced part and give it
to our QA[Quality Assurance] engineers. They are checking all cases.” (Participant
8) “I have to make sure that my change will not cause bugs or other problems for
other parts of the project or system’s components ... ” (Participant 9) “... I get
that a lot in my work - as the systems quite often use global variables, that are a
mess to track.” (Participant 7)

9.9.2 practice of IA

From what the participants said, the need of doing IA is different for different
fixes. “In Raptor project - not much, because the fix seemed to be fairly isolated.
In PDF project - yeah - as I still had some doubts about what’s the lifecycle of
PdfDictionary and what uses it” (Participant 7) “in pdfsam I understood that
changing Pdfutils class can lead to bugs in other ways of manipulating pdfs. ..
And I’ve tryed to fix the bug not introducing any changes in other components
... In raptor it seems clear that the input params are not processed correctly. I’ve
checked places where this state of game is used and it seems that my changes can’t
influence the other code.” (Participant 8)

The participants also mentioned to do IA by exploring the methods being
called. “Example: I change a method of a class. After my changes I have to find
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direct and indirect calls of this method and make sure that system will be ok after
my changes.” (Participant 9) Note that the programmers also mentioned to rely
on quality assurance team to do IA. “If I’m uncertain about my changes I can
make a list of influenced part and give it to our QA engineers. They are checking
all cases.” (Participant 8)

9.10 Comparison to Other Results of Code Changing Tasks

Many research projects were conducted on the topic of code changing [46,25,23].
Sillito et al. [46] studies three research questions: 1) What knowledge programmers
need when they change code? 2) How programmers get the relevant information?
3) How well the existing tools help programmers get the knowledge? They ob-
served 27 sessions of programmers doing code changing tasks. They identified four
categories of questions that programmers asked when they did the tasks. In the
four categories, there are two categories that are related to our results.

The first category is “finding focus points”. In this category, Sillito et al. noted
five questions, like “Which type represents this domain concept or this UI element
or action?” [46]. In our in-depth study specifically, the participants asked the
question “where is the code that represents this action?”. Particularly for PdfSam,
all the three participants in the interview said they wanted to locate the code that
rotating the pdf file. “The first step is select project modules which may contain
the bug. E.g. for PdfSam project I looked for the ”Rotation” related modules.”
(Participant 7) “I knew from description that rotation failed and I was finding
places where rotation is using.” (Participant 8) “... I tried to find the code that
handles rotation first” (Participant 9)

The second category is “expanding focus points”. This category has 15 ques-
tions, such as “Where is this method called or type referenced?” and “What does
the declaration or definition of this look like? ” [46]. In the videos, we recorded
the uses of Eclipse navigational functionalities. To compare our results to Sillito et
al.’s report, we generated a snapshot of the uses of Eclipse navigation function-
alities. 5 We listed the navigational functionalities in Table 4. In the Tables 11
and 12, we listed the number of the uses of each Eclipse navigational functionality.
Note that we count only the action of a functionality. For example, for Participant
1, s/he opened type hierarchy once, but s/he might check the subtypes/supertypes
multiple times as long as s/he does not close the result window. Among the six
functionalities, opening declaration and searching are two most often used func-
tionalities.

Ko et al. [23] performed a study where the participants were asked to do two
debugging tasks and three enhancement tasks. The study found three activities.
The first activity is searching. We also found searching activities in the partici-
pants. The number of searches is reported in Table 11. Ko et al. also found that
the participants lost track of relevant code because the navigational tools were
used for various purposes. We found one case that is consistent with this finding.
Participant 9 opened the declaration of “getState” seven times, and “isInState”
three times in a debugging session. This shows that although the participant had

5 This data is preliminary and not included when we answer our research questions.
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Table 11: IDE Activities in Debugging PdfSam

Participant Call Type Declaration Implementation References Search
Id Hierarchy Hierarchy

1 5 0 10 0 0 0
2 0 0 20 1 0 0
3 0 0 4 0 0 0
4 0 0 0 0 0 0
5 0 0 33 0 3 4
6 0 0 20 0 1 3
7 0 0 21 15 2 2
8 0 0 24 21 1 47
9 16 0 21 0 0 28

Table 12: IDE Activities in Debugging Raptor

Participant Call Type Declaration Implementation References Search
Id Hierarchy Hierarchy

1 7 1 10 0 0 6
2 0 0 30 0 0 16
3 0 1 11 0 0 5
4 1 0 0 0 0 17
5 0 0 38 0 8 9
6 0 0 55 0 5 4
7 0 0 14 5 4 20
8 0 0 31 3 0 2
9 11 0 22 0 0 7

visited the declaration of “getState”, s/he still had the need to find the information
again.

LaToza et al. [25] studied both novices and experts and observed their be-
haviors when they were asked to improve the design of the programs. LaToza et
al. reported that the participants made “path choice decisions”, which is choos-
ing to explore the locations that may have useful information. We have similar
notes from our participants. “Firstly I found an exception in pdfsam and it mis-
leads me. I spend time to fix this exception.” (Participant 8) “there seems to
be a swt gui thread, the code hits this thread and pauses on a lock it is like it
is waiting for a change of state so the thread can be unlocked ... investigating
Game.IS CLOCK TICKING STATE with the debugger”(Participant 3, Raptor,
33:06, in the notepad shown in the video. We did not require the participants to
take notes. This is what we observes from the video.)

We also found the evidence for the participants confirming or disconfirming
hypotheses, which is also reported by Latoza et al.. “For the Raptor project I
initially had a hypothesis that there should be some event handler that does not get
activated once you unpause, ... and tried to confirm/deny that first.” (Participant
7) This is also consistent with the debugging model we introduced in Section 4.
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10 Breadth Study Design

In this section, we will describe our breadth study, in which 35 professional pro-
grammers filled out our online survey. We will cover our research questions, online
survey format, methodology, survey software, participants, and threats to validity.

10.1 Research Questions

In this section, we designed five research questions to study the measurable factors
related to the research objectives.

RQ5 Do programmers know the term of IA?
RQ6 Do programmers self-report doing IA?
RQ7 Do programmers self-report using IA tools?
RQ8 After programmers apply a possible fix to a bug, do they run the program

first or check the impacts of the fix first?
RQ9 After programmers apply a possible fix to a bug, what functionality of the

IDE do they use?

The rationale behind RQ5 is that programmers may not know the term of
“change impact analysis”, because it is a term heavily used in academia but per-
haps not in industry. If the programmers do not know the term, they may not do
IA intentionally. The rationale behind RQ6 is to determine the self-reported level
of IA. The rationale behind RQ7 is that if programmers use IA tools, we know
that programmers do IA. If programmers do not use the tools, it is necessary to
further investigate what prevents IA techniques from practice.

RQ5 to RQ7 are self-reported questions. In addition to these self-reported
questions, we have RQ8 and RQ9, which focus on the behavior of programmers.
The rationale of RQ8 is that if programmers run a program immediately after they
apply a possible fix, they prioritize dynamic IA after they make changes. RQ9’s
rationale is that the different functionalities of the IDE that programmers use is
an evidence of whether or how they do IA. For example, if programmers click “call
hierarchy” of a method, it indicates that the programmers do IA by inspecting
call graphs.

10.2 Methodology

We used a survey study methodology, and followed the steps done by LaToza and
Myers [26]. Our procedure was as follows:

1. Formulate research questions. We based our research questions on related
literature on IA, such as the study done by Roveg̊ard et al. [42]

2. Design survey questions. We aim to rely as little on self-reported level as we
can. Therefore, we put RQ8 and RQ9 first. For these two questions, we provide
a real situation to the participants: a real project and a real bug report. Then,
we provide a suggested fix, so that the participants have an initial change
location. Under this scenario, we ask the participants what they will do next
(see Section 10.3 Item 3). This question corresponds to RQ8. Furthermore,
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we give an image of an Eclipse IDE. And we ask the participants to point
out where they will go next after they make a change in source code (see
Section 10.3 Item 4). This question corresponds to RQ9. After these questions,
we ask participants about IA, including whether they know about it (RQ5),
whether they do it (RQ6), and whether they use IA tools (RQ7). With this
order of the questions, we mitigated the biases that may occur in the previous
questions.

3. Distribute the survey. We recruited participants by convenience sampling [42].
We selected participants based on their programming experience and their
availability. We targeted professional programmers in industry, especially in
large software companies, see Section 10.4. We obtained more than 30 partici-
pants, because we want to have statistically significant results.

4. Collect and analyze the results. We used an automated process of col-
lecting responses provided by Qualtrics Survey Software. In this way, we en-
sured maximum accuracy and maximum response rate. We have one hypothesis
based on our results in Sections 11.4. For this hypothesis, we used Pearson’s
Chi-square test and Fisher exact test [32]. We used Fisher exact test because
some numbers in our data are smaller than five. In such cases, Fisher exact is
more accurate than Pearson’s Chi-square test.

10.3 Online Survey Format

We built our online survey by Qualtrics Survey Software6. This online survey
has six web pages. A deactivated survey is available at the online appendix in
Section 10.6. The format of this survey is as follows:

1. The first page asks about programmers’ professional experience.
2. The second page shows a bug report, which is the bug report of Raptor

described in Section 7.3.
3. The third page suggests a fix to that bug, and asks programmers whether

they will run the fix or check the impacts of the fix first (RQ8).
4. The fourth page shows an image of an Eclipse IDE. In the image, there is an

IDE, where the suggested fix is applied, see Figure 11. There are 34 clickable
areas in the image and each area corresponds to a functionality of the IDE.
We asked programmers to click on the area that they will go next after they
apply the fix (RQ9).

5. The fifth page asks programmers whether they know about IA (RQ5), whether
they do IA (RQ6), and whether they use any automated tools for IA (RQ7).
If the programmers do not know about IA, we used the following exact words
for defining IA:
“Change-Impact Analysis is a task of finding the source code which is affected
by the source-code change that you are going to make.”

6 http://www.qualtrics.com/

http://www.qualtrics.com/
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Fig. 11: Page 4 of the survey for our breadth study in Section 10. This page shows
an image of an Eclipse IDE. The red boxes are the areas that participants can
click. The areas include the window of Package Explorer, the button of Open
Declaration in the context menu, and other menu options and Eclipse windows.
We asked each participant to click on the area that she will go next after she makes
a fix. The reason for this page is to answer RQ9.

10.4 Participants

There are 35 participants. All of them self-reported that they program in Java com-
fortably. Seventeen of them have more than four years of professional experience
in industry. Fourteen of them have one to four years of professional experience.
Four of them have less than one year of professional experience. Twenty-four of
them are working or worked in industry. Ten of them are graduate students. One
of them programs as a hobby. In ten graduate students, six have intern experi-
ence as a programmer. The professional programmers are from the Computing
Research Center (CRC) at the University of Notre Dame, and other various large
IT companies.
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10.5 Threats to Validity

As with any study, our work has threats to validity. The project and the bug we
used in the survey may not represent a general bug scenario. Also, the participants
may not understand the project or the bug, so their responses may not represent
their usual behavior in their own projects. However, in the survey, we do not ask
the participants to actually fix the bug. Therefore, the participants do not need to
consider the details of the project and the bug. Additionally, we used an image of
Eclipse, which may not be the usual IDE that the participants use. We mitigate
this threat by choosing Eclipse, which is one of the most often used IDE for Java
programs.

Besides these threats, we also have response bias in the survey. To mitigate
the bias, we introduce the term, change impact analysis, at the end of the survey.
Additionally, the population of the participants may not be representative. We
attempt to mitigate this by having a sample of 35 programmers who have various
programming experience. From this sample size, we are able to obtain statistically
significant results.

10.6 Reproducibility

A deactivated survey, the result, and the scripts for data analysis are available in
the online appendix:
http://nd.edu/~sjiang1/IA-study.htm

11 Breadth Study Results

In general, our breadth study shows that programmers do not use IA tools but do
dynamic IA after they make changes. In the rest of the sections, we will explain
how we came to this conclusion. The overall results are shown in Figures 12 and 13.

11.1 RQ5: Knowledge of Term of Change Impact Analysis

We found evidence that the majority of the programmers do not know what IA
is. In our 35 participants, nine of them reported that they knew the term of IA.
Twenty-six (77%) of the programmers did not know the term IA before this study.
Our interpretation is that the academic theory of IA has not penetrated education
such that the programmers leave school knowing what IA is.

11.2 RQ6: Self-reported Level of Change Impact Analysis

According to our results, the majority of the programmers reported they did IA.
Twenty-eight (80%) of the 35 participants reported that they did IA. We think the
high self-reported level indicates that the programmers think IA is an important
and a necessary process in programming.

http://nd.edu/~sjiang1/IA-study.htm
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However, we found evidence showing that programmers who know IA are less
likely to think they do IA. In the nine programmers who knew IA, four (44%)
programmers reported that they did IA. In the 26 programmers who did not
know IA, 24 (92%) programmers reported that they did IA. We think whether
programmers report they do IA is related to whether they know the IA concept.
We tested the hypothesis in Table 13. The null hypothesis is that reporting doing
IA and having heard of IA are independent. With a critical alpha level of 0.05, the
null hypothesis is disproved using Pearson’s chi-square test and Fisher exact test.
Therefore, whether the programmers report they do IA or not is dependent on
whether they knew the concept of IA before the study. Our interpretation is that
the theory of IA may be different from the industry practice. When programmers
know the academic term of IA, programmers may refer IA to the IA process in the
literature that is described in Section 3.1. They do not report they do IA because
they do not follow the IA process. For those who do not know the academic term,
they report that they do IA because they consider IA as a general concept.

11.3 RQ7: Use and Knowledge of IA Tools

Our results show that the majority of the programmers do not use IA tools, which
matches our finding in Section 9.7. Of the 28 programmers who reported that
they did IA, 23 programmers (82%) reported that they did not use IA tools.
Three programmers (11%) reported that they were not sure whether they used
tools or not. One possible explanation is that the three programmers use IDE
functionalities to do IA, such as “open call hierarchy of” a method, and they are
not sure whether these functionalities are IA tools or not. Overall, the result shows
that most of the programmers do not use IA tools.

11.4 RQ8: First Step after Having a Possible Fix

In this research question, we asked what the programmers do directly after they
apply a possible fix. Of the 35 participants, 17 (49%) programmers chose to run
the program to see whether the fix works; 17 (49%) programmers chose to check
the effects of the change; One programmer chose neither.

An explanation for running the program first is that programmers can find out
whether the fixes work or not by running the program. If the fixes do not work, the
programmers may undo the fixes. In this case, the programmers may not need to
further investigate these changes. So programmers may want to run the program
first.

11.5 RQ9: First IDE Functionality Used after a Possible Fix

To process the result, we divided the functionalities listed in the Figure 13 into
three categories. The first category is “running” the program. There are 23% pro-
grammers who chose to run the program. By running the program, programmers
can observe the impacts of a change on the outputs. So running the program is
one of the simplest dynamic IA methods.
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Fig. 12: The results for RQ5 to RQ8 in our breadth study in Section 10. RQ5:
do programmers know the term of change impact analysis? RQ6: do program-
mers think they do change impact analysis? RQ7: do programmers use change
impact analysis tools? RQ8: after programmers make a possible fix, do they run
the program first or check the impacts of the fix first?
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Fig. 13: The result of RQ9 in our breadth study in Section 10. RQ9: after pro-
grammers make a possible fix, what IDE functionality do they use?

The second category is “debugging” the program, which is running the pro-
gram with a debugger. We believe debugging is a type of dynamic IA because
programmers can follow dependencies from the change location in execution. Fig-
ure 13 shows that 40% of the programmers run in debug mode directly after they
make a change. The first and second categories cover 63% of the participants,
which indicates that most programmers use dynamic approaches to do IA after
they make changes.

The third category includes the functionalities that may help the programmers
check the effects of the change for multiple places. These functionalities are opening
“call hierarchy”, navigating “workspace”, “navigating outline”, “searching”, and
“opening type hierarchy”. Our results show that there are 31% of the participants
do IA by these static methods.

In summary, most programmers do IA after they make a change. Among the
programmers who do IA, more than half of them do IA dynamically.
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Table 13: The counts of the programmers classified by self-reported level of IA and
their knowledge of IA.

Heard of IA Not heard of IA All

Do IA 4 24 28
Do not do IA 5 2 7
All 9 26 35

The null hypothesis: “Do/Do not do IA” and “Heard/Not heard of IA” are independent.
Pearson’s chi-square statistic = 9.573, p-value = 0.002
Fisher exact test, p-value = 0.006

11.6 Qualitative Results

We received nine comments related to IA and software engineering in our breadth
study. Three comments expressed the needs for IA tools. For example, one pro-
grammer commented “Repeating the specific bug in a large project is time con-
suming. I would appreciate if Eclipse community can offer a tool to help me figure
out which variables will be changed before tracing the code in debug mode.” Three
programmers described their IA practice in the comments. One practice is single-
step debugging. Another practice is “in a manual trial and error manner”. The
third comment said “I would compile the fix just to see what happens first (see if
it addresses the bug). If so, I would then do change impact analysis to determine
if this produces new bugs.”

12 Discussion

In this section, we will discuss our three research objectives based on our results
of the research questions in the two studies.

12.1 Objective1 What knowledge do programmers have of research activities in
IA?

Programmers do not know the term Change Impact Analysis. In the
survey, 26 out of 35 programmers do not know the term. In the interviews in the
in-depth study, two of the three programmers do not know the term. 23 out of 35
programmers in the survey do not use any IA tools, and the nine programmers in
the in-depth study did not use any IA tools in the video. In the three interviews,
the programmers all reported that they do not use any IA tools.

However, programmers often recognized IA once the term was intro-
duced. Most programmers in the survey reported that they do IA. In the survey,
28 out of 35 programmers reported they do IA. Three programmers in the inter-
views all recognized IA and reported that they did IA. This implies that IA exists
in the industry practice and is important to the programmers. However, the IA
tools are not known to the programmers. This shows that the industry has not
been benefited from the research work of IA.
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In the interviews, we found IA often is recognized as a process after program-
mers have a possible fix. The importance of IA is mentioned because programmers
do not want their patches causing new bugs.

“I always try to understand how I can influence the code. If Im uncertain about
my changes I can make a list of influenced part and give it to our QA[Quality
Assurance] engineers. They are checking all cases.” (Participant 8)

“I have to make sure that my change will not cause bugs or other problems for
other parts of the project or systems components ... ” (Participant 9)

“... change impact analysis to determine if this produces new bugs.” (a com-
ment in the breadth study)

Three possible reasons can explain why we do not have evidence for much post-
change impact analysis. First, in the study, the quality of the code is not a priority,
because the participants know that their changes are for research purposes and
the code will not be used by others. Second, they may not see post-change impact
analysis as a part of the debugging process. It is possible that programmers think
that the bug is fixed once the program outputs the correct output. As Participant
8 mentioned, IA tasks can be assigned to quality assurance engineers. Quality as-
surance engineers are those programmers who ensure that software meets specific
quality standards. For example, one of the most common practice of quality assur-
ance is testing. Note that in this paper, we did not study the practice of quality
assurance engineers. However, IA tools may be used in such practice.

Third, in our study, we did not count the activities after the participants ran
the program, which is after FRT and LRT in Section 3. The participants might
do post-change impact analysis after FRT and LRT , but we cannot distinguish
them from pre-change impact analysis for the next change.

Interestingly, we found evidence of programmers doing IA where IA is not
recognized—in the middle of debugging processes. In the in-depth study, pro-
grammers ran programs and used debuggers very often after they made changes.
This indicates that IA tools may be useful during debugging process, especially
after programmers try a change which does not work.

12.2 Objective2 What technologies do programmers use to do IA if they do any?

The plainest static method of IA is reading code by hand. Programmers use
IDE navigational features to navigate through the dependencies. In the
in-depth study, on average each programmer visited 16 files and used 28 times of
IDE navigational functionalities during debugging.

The plainest dynamic method of IA is running program and checking the out-
puts. Instead of running program directly, programmers often use debuggers
so that they can check the values in the middle of an execution. In the
breadth study, 14 of the 35 programmers chose to use debuggers and 8 of the
35 programmers chose to run programs after they make a change. In the survey,
one programmer commented “I understand change impacts mostly via single-step
debugging.”

In the interviews, the programmers expressed their satisfaction about the cur-
rent toolset for debugging. “VM and modern IDEs have enough tools count for
app’s debugging” (Participant 9) “the default debugging functionality was suffi-
cient for me” (Participant 7)
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In the survey, however, the programmers commented about the need for IA
tools. “There is still a lack of automatic supports of impact analysis.” “Repeating
the specific bug in a large project is time consuming. I would appreciate if Eclipse
community can offer a tool to help me figure out which variables will be changed
before tracing the code in debug mode.”

These results show IA may be helpful for debugging. For example, programmers
read at most 26 files before they made changes in our study. However, neither nav-
igational features nor debuggers keep track of the dependencies discovered among
the files. If IA tools can store the dependencies of the visited files, programmers
may navigate the code more efficiently.

12.3 Objective3 At what phases of debugging, do programmers do IA if they do
any?

Programmers do static IA before they make a change. In the videos of
the in-depth study, before the programmers made changes, they used an average
of six times of IDE navigational functionalities. For the programmers without
suggested fixes, they used IDE navigational functionalities for an average of eleven
times before they made changes. In the interviews, the programmers also reported
doing static IA in the end of debugging. “After my changes I have to find direct
and indirect calls of this method and make sure that system will be ok after my
changes.” (Participant 9) However, whether and how much programmers actually
do IA in the end of debugging need to be further studied.

Programmers do dynamic IA almost immediately after programmers
make changes. In the in-depth study, the programmers on average visited two
files and used one time of navigational functionality before they run the programs
(with or without debuggers). In more than the half of the changes, the program-
mers visited only one file and did not use any navigational functionality. Especially,
for the last modification of a change location, the programmers spent an average
of 27 seconds before they ran the programs.

In the debugging process in literature (described in Section 4), programmers
create and test hypotheses. In testing hypotheses, programmers are doing some
form of IA. From the breadth study, one programmer commented “I hadn’t heard
of the term Change-Impact Analysis but I do some form of it, usually in a manual
trial and error manner.” Also, we have similar comments from the interviews in
the in-depth study. “first locate the issue and then confirm/deny hypothesis what
is wrong” (Participant 7)

These findings imply that IA processes in practice differ in the two phases: pre-
change and post-change. Likewise, IA tools may need different types of techniques
in the two phases. For pre-change, static IA techniques may be preferred because
they have lower cost than dynamic techniques.

For the post-change phase, dynamic IA techniques may be used because pro-
grammers often run programs and check dynamic information after they make
changes. In this case, the cost of dynamic IA techniques can be much lowered.
First, dynamic IA techniques are applied on only one execution, which is prepared
by programmers already. Second, dynamic IA techniques are applied on one spe-
cific change, which can be identified automatically by comparing the current code
and the code ran in the previous execution.
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13 Conclusion

In this paper, we did two studies to find out whether programmers do change im-
pact analysis (IA). In our in-depth study, we hired nine professional programmers
repairing two real bugs in two open source systems. We recorded and analyzed the
videos of their debugging processes. In our breadth study, we hired 35 professional
programmers to fill out our online survey. In the online survey, we asked them
about what they know about IA and what they do to fix a bug.

From our two studies, we discovered the evidence of programmers doing IA.
In the in-depth study, we found the evidence indicating programmers doing IA,
and in the breadth study, most programmers reported that they did IA. Second,
we found the evidence that the practice of IA is different from the process of IA
described in the literature. No programmer in our in-depth study used any IA
tools, even though they did IA to fix the bugs. In the breadth study, most of the
programmers reported they did not use IA tools and most of the programmers did
not know the term “change impact analysis”. The purposes of IA can be various.
We found programmers tend to think IA as a process that should be done after
debugging. However, during debugging, programmers also do IA to figure out how
to fix the bugs.
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