
Empir Software Eng
DOI 10.1007/s10664-014-9344-6

An empirical study of the textual similarity between
source code and source code summaries

Paul W. McBurney ·Collin McMillan

© Springer Science+Business Media New York 2014

Abstract Source code documentation often contains summaries of source code written by
authors. Recently, automatic source code summarization tools have emerged that generate
summaries without requiring author intervention. These summaries are designed for readers
to be able to understand the high-level concepts of the source code. Unfortunately, there is
no agreed upon understanding of what makes up a “good summary.” This paper presents an
empirical study examining summaries of source code written by authors, readers, and auto-
matic source code summarization tools. This empirical study examines the textual similarity
between source code and summaries of source code using Short Text Semantic Similarity
metrics. We found that readers use source code in their summaries more than authors do.
Additionally, this study finds that accuracy of a human written summary can be estimated
by the textual similarity of that summary to the source code.

Keywords Source code summarization · Documentation · Textual similarity ·
Automatic documentation generation

1 Introduction

Programmers rely on good documentation in order to effectively understand source
code (Forward and Lethbridge 2002). Documentation often consists of small summaries of
source code. A “summary” is a brief description of the functionality and purpose of a section
of source code, such as method summaries in JavaDocs (Kramer 1999). Summaries help
programmers focus on small sections of code relevant to their efforts without needing to
understand an entire system (Lakhotia 1993; Roehm et al. 2012; Singer et al. 1997). While

Communicated by: Massimiliano Di Penta

P. W. McBurney · C. McMillan (�)
Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, USA
e-mail: cmc@nd.edu

P. W. McBurney
e-mail: pmcburne@nd.edu

mailto:cmc@nd.edu
mailto:pmcburne@nd.edu

Empir Software Eng

popular, summaries are expensive to write (de Souza et al. 2005; Kajko-Mattsson 2005),
are often incomplete (Lethbridge et al. 2003), and become outdated as code changes (Fluri
et al. 2007; Ibrahim et al. 2012).

These difficulties in creating summaries have motivated researchers to design several
automated summarization tools as alternatives to writing summaries manually (Burden
and Heldal 2011; Mani et al. 2012; McBurney and McMillan 2014; Moreno et al. 2013;
Sridhara et al. 2010, 2011a, b). These automated approaches follow one of two strategies.
One approach presented by Haiduc et al. returns a list of the most important keywords from
the method using term frequency/inverse document frequency (tf/idf) (Haiduc et al. 2010).
A different approach is presented by Sridhara et al. (2010). Sridhara et al.’s approach selects
statements from a Java method. Then, it creates natural language sentences from the selected
statements by placing keywords from the statements into predefined templates (Sridhara
et al. 2010). A related approach is presented in our own prior work (McBurney and
McMillan 2014).

A key similarity of these approaches is that they produce summaries that influence the
reader’s understanding of the source code without input from the source code’s author.
Authors are individuals who wrote the source code. Meanwhile, readers are non-authors
seeking to understand source code by examination. There is a mismatch between authors
and readers. Authors translate the high-level concepts into low-level implementation, while
readers must deduce the concepts and behaviors from the low-level details. The readers
struggle to understand the author’s intent (Biggersta et al. 1993), and inevitably make mis-
takes in their understanding. At the same time, authors who write documentation of their
source code must choose which key concepts and details to communicate to readers via doc-
umentation. The concepts and details described in documentation are the ones that authors
believe readers would need to know.

This mismatch between authors and readers is critical for source code summariza-
tion tools. The reason is that source code summarization tools generate documentation
of code from the code itself—a process more similar to the reader’s comprehension than
the author’s writing of documentation. Source code summarization tools are limited to the
information in the code in the same way as readers. But, summarization tools are expected
to produce documentation with the same information as documentation from human
authors.

Unfortunately, current software engineering literature provides little guidance to design-
ers of source code summarization tools. There is no consensus on what information from
the source code that the tools should target. One frequent assumption is that summaries
should be textually similar to the source code, meaning that the summaries should contain
the same keywords as the source code (Khamis et al. 2010; Steidl et al. 2013). However,
this assumption has not been empirically validated independent of tools that are based on
the assumption. At the same time, it is not known whether readers and authors use the
same keywords to describe the same concepts, nor even if readers use the same keywords
as other readers. These issues are important because they affect researchers’ understanding
of what keywords should be used by automated summarization tools. At present, designers
of these tools must “guess and check”, in a time-consuming process of building multi-
ple tools and selecting the best-performing configurations through expensive human-driven
case studies (Haiduc et al. 2010; McBurney and McMillan 2014; Sridhara et al. 2010).

In this paper, we address this problem in an empirical study comparing summaries writ-
ten by authors of source code to summaries written by readers of source code. We identify
the similarity between source code and summaries written by the authors, and compare the
similarity to the similarity between source code and summaries written by other readers.

Empir Software Eng

Then, we use our analysis to draw guidelines for designers of source code summarization
tools.

We compute similarity using Short Text Semantic Similarity (STSS) algorithms includ-
ing overlap percentage, STASIS (Li et al. 2006), and Lightweight Semantic Similarity (Croft
et al. 2013). We also examine the relationship between a summary’s similarity to source
code, and the reader perceived accuracy of the Java method summary. Each of these metrics
is described in detail in Section 3.6. Our contributions in this paper are as follows:

– An empirical study comparing source code of Java methods to author and reader sum-
maries of those methods. This study found that a method’s source code is more similar
to reader summaries than author summaries (See Section 4.1).

– An empirical study comparing reader summaries of Java methods to source code and to
other reader summaries of the same Java methods. This study found mixed results (See
Section 4.2).

– An empirical study examining the relationship between accuracy of author summaries
of Java methods and the similarity of the summaries to the method’s source code. Accu-
racy is based on data collected from a previous case study (McBurney and McMillan
2014), where readers were asked how accurately given summaries explained source
code. This study found that high similarity between author summary and source code
is correlated with accuracy (See Section 4.3).

– An empirical study examining the relationship between accuracy of automatically gen-
erated summaries and the similarity of those summaries to source code. This study
found that the similarity to a method’s source code of summaries generated using Srid-
hara et al.’s approach (Sridhara et al. 2010) is weakly positively correlated with reader
perceived accuracy. However, the similarity of a method’s source code to summaries
generated using McBurney et al.’s approach (McBurney and McMillan 2014) is not
correlated with accuracy (See Section 4.4).

– To ensure reproduceability, our results are publicly available through an online
appendix.1

2 The Problem

We address the following gap in software engineering literature: there is no clear under-
standing of how readers understand source code or author summaries. Consider the diagram
in Fig. 1. The areas labelled “Author” and “Reader” represent the keywords of the sum-
maries written by authors and readers respectively, while the “Source Code” section
represents the keywords in the source code being summarized. In this diagram, we are most
interested in the areas of overlap between the separate groups. The overlapping areas repre-
sent the use of shared keywords. A large overlap between two entities would indicate those
entities being similar.

For example, the overlap between Author and Source Code, labelled AS contains the
keywords authors used in author summaries that come from the source code they wrote.
AS represents keywords from the source code the author feels necessary to use in order
to explain the source code to readers. A large AS would mean the author is using more
keywords from source code.

1http://www.nd.edu/∼pmcburne/sumalyze

http://www.nd.edu/~pmcburne/sumalyze

Empir Software Eng

Fig. 1 Diagram illustrating keyword usage. Each circle represents a set of keywords present. “Source
code” represents the keywords from the source code. “Author” and “Reader” represent the keywords
in summaries written by the author and readers, respectively. Keywords from source code used in
author summaries are represented by “AS”. Keywords from source code used in reader summaries are
represented by “RS”. Keywords shared by author summaries and reader summaries are represented
by “AR”

Another overlap area is the overlap between Readers and Source Code. Labeled RS,
this section contains keywords that readers select from the source code to use in their
summaries. The RS section represents which keywords from the source code read-
ers feel are necessary to summarizing the source code as the reader understands it.
A large RS would imply that readers use source code keywords frequently in their
summaries.

The final overlap area in this diagram, AR, is the overlap between Authors and
Readers. This overlap represents keyword selections shared between author-written sum-
maries and reader-written summaries. A large AR in keyword selection between these
two fields would imply a similar understanding from the source code, even if keywords
in AR are not present in Source Code. A small AR would imply that there is a dis-
connect between how authors describe source code and how readers interpret source
code.

So far, we have defined the size of the overlap between sections of the diagram in
Fig. 1 as the number of keywords shared between each section. Another way to define
the size of an overlap is by examining semantic similarity between source code, author
summaries, and reader summaries. Semantic similarity is the similarity in the meaning
of the keywords (Croft et al. 2013; Li et al. 2003). Using semantic similarity is useful
because source code is often written with large identifiers that can decrease source code
readability (Liblit et al. 2006). By this definition, a large AR section would mean that
author and reader summaries are semantically more similar. That is, the author and reader
summaries share similar meaning, even if the explicit similarity of keyword usage is dif-
ferent. A small AR would mean that author and reader summaries are not semantically
similar.

By analyzing the overlap between each of the three groups in Fig. 1, we will be able to
better understand the relationships that exist between source code and summaries written
by authors and readers.

Empir Software Eng

3 Empirical Study Design

In this section, we will describe our research questions for this study, and justify their use
in solving the overall problem of keyword selection in source code summarization. Addi-
tionally, we will lay out our methodology for answering these questions, including brief
explanations of the metrics we use.

3.1 Research Questions

This study seeks to identify what keywords are selected for source code summarization by
both authors and readers of the source code. In doing so, we aim to examine the relationship
between the three keyword sources as illustrated in Fig. 1. Therefore, we pose the following
four Research Questions (RQs):

RQ1 Which is more similar to source code: author-written summaries or reader-written
summaries?

RQ2 Which is more similar to reader-written summaries: the source code being summa-
rized, or the summaries of other readers?

RQ3 Is there a correlation between the similarity of author-written summaries to source
code and the reader defined accuracy of author-written summaries?

RQ4 Is there a correlation between the similarity of automatically-generated source code
summaries to the source code and the reader defined accuracy of automatically generated
summaries?

The rationale behind RQ1 is to determine whether authors or readers of source code
more commonly use keywords from the source code when writing summaries. If readers
are relying more on keywords in source code than the authors, it could imply that the author
summary does not effectively communicate the source code to the reader. We do this so we
can test the assumption that summaries should use the same keywords as the source code
they summarize in order to most effectively communicate to source code readers (Khamis
et al. 2010; Steidl et al. 2013). The rationale RQ2 is to examine how multiple readers inter-
pret source code. If reader summaries are more similar to each other than to source code, it
could imply that readers are able to interpret a shared high level understanding from source
code. However, if reader summaries are more similar to source code than each other, or are
equally similar, it could imply that source code can often fail to communicate high level
ideas. This could mean readers are simply translating the source code into natural language,
rather than summarize the source code at a high level. This would indicate a larger problem
in what readers think is important compared to what authors communicate in their doc-
umentation. RQ3 explores the idea that an accurate author summary should have a high
similarity to the source code. We define an accurate summary as one that correctly repre-
sents the actions of the source code. This definition is shared with the definition used by
Sridhara et al. (2010) and by our previous work (McBurney and McMillan 2014). A positive
correlation between similarity and accuracy would indicate that readers believe an accu-
rate summary should reflect the source code. RQ4 is similar to RQ3. However, RQ4 will
specifically examine if a correlation between a summary’s perceived accuracy by readers
and that summary’s similarity to the source code for automatically generated source code
summaries. In this study, we examine two automatically generated techniques: Sridhara
(Sridhara et al. 2010) and Sumslice (McBurney and McMillan 2014).

Empir Software Eng

Table 1 The Java programs used
in our empirical study Program Methods KLOC Java files

NanoXML 318 5.0 28

Siena 695 44 211

JTopas 613 9.3 64

Jajuk 5921 70 544

JEdit 7161 117 555

JHotdraw 5263 31 466

3.2 Methodology

The methodology we use to answer RQ1 and RQ2 is as follows: First, we collect author
and reader summaries of six different Java applications (Table 1) (Section 3.3). Then,
we preprocess those summaries using standard techniques such as stop word filtering
(Section 3.4). Next, we use three different STSS metrics to compute the similarity among
the author summaries, reader summaries, and source code (Section 3.6). Finally, we use
statistical hypothesis tests to determine the statistical significance of the differences in the
STSS metrics we calculated for the authors to source code, authors to readers, readers to
source code, and readers to other readers for the same code (Section 3.8).

For RQ3 and RQ4, we collected data on reader perceived quality for author summaries
and for summaries created by two different automatic source code summarization tools
(Section 3.3). Then, we use the Pearson correlation metric to determine the correlation
between this quality data and the STSS-calculated similarity to source code. Details of our
analysis for all research questions are in the following sections, and throughout Section 4.

3.3 Data Collection

This empirical study uses data collected from a two case studies we conducted.2 The first
was a pilot study where we showed programmers summaries of source code and asked
the participants to answer multiple-choice quality questions about those summaries. These
questions are listed in Table 2. These questions were adapted from other automated source
code summarization studies, including Haiduc et al. (2010) and Sridhara et al. (2010). The
summaries came from three sources: author summaries via JavaDocs, a prototype auto-
matic summarization approach, or a concatenation of the two. In addition to answering the
multiple choice questions based on the summaries and source code, we asked the partici-
pants to write a brief summary for the code they read in their own words. The participant
was able to click a link to open a source code browser which would initially focus on the
method that was summarized. The participant was able to browse the entirety of the source
code3 in the source code viewer, but was asked to limit their summary to just the method
in question. This pilot study was taken by 13 participants. Six were graduated students and

2Note that while we use data collected during these previous studies, this paper bears no other similarity to
the previous studies, in that we study different research questions for a different purpose.
3The source code the participant viewed was stripped of all inline comments and Javadocs documentation to
avoid biasing the participant.

Empir Software Eng

Table 2 The questions we ask during the user studies

Q1 Independent of other factors, I feel that the summary is accurate.

Q2 The summary is missing important information, and that can hinder

the understanding of the method.

Q3 The summary contains a lot of unnecessary information.

Q4 The summary contains information that helps me understand

what the method does (e.g., the internals of the method).

Q5 The summary contains information that helps me understand why

the method exists in the project (e.g., the consequences of altering

or removing the method).

Q6 The summary contains information that helps me understand how

to use the method.

Q7 Write a summary for what the method does in your own words.

Questions Q1-Q6 were answerable by participants as “Strongly Agree”, “Agree”, “Disagree”, and “Strongly
Disagree.” Q7 was an open answer question

three were undergraduate students at the University of Notre Dame Computer Science and
Engineering Department. Four participants were affiliated with other organizations not
listed due to privacy policies. These four participants were included professionals and
graduate students.

The second study was the focus of our evaluation of two automated source code sum-
marization tools (McBurney and McMillan 2014). This study was identical to the pilot
study: participants were asked to answer six multiple-choice questions listed in Table 2
and briefly summarize the code they read. However, in the second study participants com-
pared two automatic summary generation approaches: one by McBurney et al’s Sumslice
approach (McBurney and McMillan 2014) and one by Sridhara et al.’s approach (Sridhara
et al. 2010). Author summaries were not included as part of this study. Our second study
surveyed 12 participants in total. Nine of the participants were graduate students from the
University of Notre Dame Computer Science and Engineering Departments. The remaining
three participants were professional programmers affilated with other organizations. These
organizations are not listed due to our privacy policy. Two participants in our second study
also participated in our pilot study. Thus, in total, both our studies combine to have 23 total
unique participants.

Both studies used a cross-validation design. Each participant read an automatically gen-
erated summary and source and answered the questions in Table 2. The answer to Q7 is
used in this empirical study as the reader summaries. Each participant saw six pages of
methods to score and summarize. Each page consisted of four randomly selected meth-
ods from a single randomly selected project. For each method, the participant was asked
to answer all questions in Table 2. Two of the pages would use our approach to gener-
ate a summary, two of the pages used the competing approach (either author summaries or
state-of-the-art generated summaries), and the remaining two pages were summarized by
concatenating Sumslice’s summaries with the competing summaries. We use the automated
summaries generated by Sumslice and Sridhara to answer RQ4. However, we do not use
the concatenation of Sumslice and Sridhara, as our results in previous work imply that it is
overly verbose (McBurney and McMillan 2014), making it a poor candidate for short text
similarity metrics.

Empir Software Eng

3.4 Pre-processing

All author summaries, reader summaries, automatically generated summaries, and source
code are preprocessed to ensure consistency. We pre-process the summaries and source code
in two steps. First, all special characters are removed. This includes operators in the source
code, and punctuation in the summaries. All special characters are replaced by whitespace.
Next, we lexicalize all the tokens in each input text. Lexicalization in source code often
involves traslating an identifier into natural language text, such as interpreting readFile
as “read file.” To do this, we split all tokens on camelcase into multiple individual tokens
separated by whitespace. This has the benefit of isolating individual words within tokens,
which, as we explain in Section 3.5, improves the semantic analysis we perform later. For
example, readFile does not have a natural language definition. However, “read” and
“file” have natural language definitions.

3.5 WordNet

Two of our three metrics rely on WordNet (Miller 1995), a natural language knowledge
base. This knowledge base is formatted as a hierarchical structure that groups words into
sets of synonyms, called synsets. Words within the same synset have similar semantics, or
meaning. WordNet is used to determine how similar two different words are with respect to
semantics.

To illustrate the idea of a knowledge base, we provide a brief example not related to
software engineering. Consider a hypothetical hierarchical knowledge base shown in Fig. 2.
If we wanted to find the similarity between the words “evergreen” and “deciduous”, we
would first find the distance, which is 2, and the depth of the shared ancestor node “trees”,
which is 3. The depth is relevant, because the lower the depth, the less similar words at equal
length are. “plants” has the same distance to “rocks” as “evergreen” had to “deciduous.”
However, because the shared ancestor “trees” is deeper, it is a more specific identifier than
“things”, the shared ancestor of “rocks” and “plants”. Thus, the larger the depth of the

Fig. 2 A hypothetical knowledge base. The similarity between two words, such as “evergreen” and “decidu-
ous“ is a function of the distance between the nodes and the depth of the lowest shared ancestor. The distance
from “evergreen” and “deciduous“ is 2, going through “trees”, and the depth of the common ancestor “trees”
is 2 where the root of the knowledge base tree is 0

Empir Software Eng

shared ancestor, the more similar the two words are. Further, since like objects are grouped
together, the larger the distance between two nodes, the less related they are.

3.6 Metrics

In this section, we will descibe in detail the three metrics of calculating Short Text Semantic
Similiarity (STSS) we use in this empirical study.

3.6.1 Overlap

The overlap metric is a percentage reflecting the number of keywords present in one body of
text that are present in a second body of text. This metric gives us the intersection between
summaries and source code. There are two different overlap metrics, overlap with stop
words, and overlap without stop words. Stop words are common words, such as “a” and
“an” which add little semantic information. For overlap without stop words, we remove the
same stop words removed by LSS and STASIS for consistency.

3.6.2 STASIS

Li et al.’s short text similarity approach STASIS (Li et al. 2006) is a metric that considers
word semantic similarity, sentence semantic similarity, and word order similarity. By using
this semantic similarity, this metric allows us to examine the meaning of keywords selected,
rather than just relying on specific keyword selection. Sentence semantic similarity, and
word order similarity are calculated using word semantic similarity. Sentence semantic sim-
ilarity, and word order similarity are then combined to calculate the overall similarity. The
use of word order similarity sets STASIS apart from most other STSS metrics (Croft et al.
2013). Complete details of this metric are in related work (Li et al. 2006), though we briefly
describe the three types of similarity here for clarity and reproduceability.

Word Semantic Similarity is the measure of how similar two individual words are. Word
semantic similarity is used to calculate sentence semantic similarity and word order simi-
larity. It requires the use of a hierarchical knowledge base. Li et al. used WordNet (Miller
1995) in their approach. Thus, our approach will also use WordNet. The word semantic
similarity is calculated by comparing the relative word positions within a given knowledge
base’s hierarchical structure. Specifically, we focus on the distance between two terms in the
hierarchy, and the depth of the shared ancestor between the two words within the hierarchy.

It is assumed that the smaller the distance between two words in a knowledge base, the
more similar they are. Additionally, the larger the depth of the shared ancestor between two
words, the more specific and, by extension, the more similar the words are. Li et al. propose
the following formula to generate the numeric similarity between two words:

s(w1, w2) = e−αl · eβh − e−βh

eβh + e−βh

In Formula 3.6.2, l represents the distance between two terms in the hierarchical structure
of WordNet, and h represents the depth of the shared ancestor. α and β are constants whose
value will vary between different hierarchical knowledge bases. For WordNet, Li et al. found
the optimal constants to be α = 0.2 and β = 0.45 (Li et al. 2003).

Sentence semantic similarity is the measure of how similar two sentences are. This metric
calculates a similarity measure between two different sets of words. It is the first component
of the overall similarity calculation.

Empir Software Eng

First, T1 and T2 are combined with a union operation into one join word set T . Then,
similarity vectors s1 and s2 are made for T1 and T2 respectively. For each word wi in T , if
that word appears in Tj , then the i-th element of sj is set to 1. If the word does not appear
in Tj , then the word semantic similarity is found between wi and every word in Tj , and the
maximum similarity is found. If the maximum similarity is above a certain threshold then
the i-th element of sj is set to that maximum similarity. Otherwise, the i-th element of sj is
set to zero. This threshold exists to prevent noisy data.

This generates two similarity vectors, s1 and s2. Each vector represents the similarity of
one input set of words to the union of both input sets T . The sentence semantic similarity is
the cosine similarity between s1 and s2.

Ss = s1 · s2

||s1|| · ||s2||
Word order similarity is the measure of how similar the word order is between two text

bodies. It is the second component in the overall similarity calculation. This process is sim-
ilar to sentence semantic similarity. T1 and T2 are again combined with a union operation
into a joint word set T . Then, we create word order vectors r1 and r2 for T1 and T2 respec-
tively. For each word wi in T , if wi exists in Tj , then the corresponding i-th element in rj is
set to the position of wi in Tj . If wi does not exist, we find the most similar word in Tj using
word semantic similarity. If the similarity is above a certain threshold, the the i-th value of
rj is set to the position of the most similar word in Tj . Otherwise, the i-th value of rj is set
to zero. Finally, to calculate the word order similarity, the following formula is used.

Sr = 1 − ||r1 − r2||
||r1 + r2||

Overall similarity is the measure of how similar two text items are. This metric combines
sentence semantic similarity and word order similarity to calculate the overall similarity
metric of two text items.

S(T1, T2) = δSs + (1 − δ)Sr

In formula 3.6.2, δ is a constant that weights the relative importance between sentence
semantic similarity and word order. Li et al. used δ = .85, to ensure that sentence semantic
similarity Ss was given more weight than word order similarity Sr . In our study, we examine
STASIS with word order and without word order. To calculate STASIS with word order, we
use δ = .85 to match Li et al. To calculate STASIS without word order, we use δ = 1. This
means that word order is nullified, as it is multiplied by 0.

3.6.3 LSS

Croft et al. (2013) proposed an STSS metric called Lightweight Semantic Similarity (LSS).
LSS addressed a lack of sentence structure within some short text items; the paper specif-
ically addresses titles of photographs. Because source code does not have a sentence
structure, this metric would appear an ideal approach. LSS has two stages. The first is a text
pre-processing stage, and the second is calculating the textual similarity between the two
text items.

Initially, LSS pre-processes the two input text items to be compared. Pre-processing for
LSS is very similar to the preprocessing described in Section 3.4. The key difference is
that the WordNet synsets of each word are identified as an additional step. Using synsets
instead or the raw input word allows the keywords to be normalized, identifying the word’s
semantic purpose without respect to verb tense or singular/plural nouns. In cases where a

Empir Software Eng

word has no synsets, it is maintained in a set for character-based String comparison. This
is particularly useful with source code, which may contain unique names that do not have
easily interpreted natural language analogues (such as Jajuk).

After pre-processing, each input text item has an associated word set, A and B. The union
A and B, C contains all terms within A and B. Note that if two words being compared are
in the same synset, their similarity is equal to 1. Then a similarity matrix is constructed by
finding the similarity between all elements in C and all other elements in C. A and B are then
used to create a weighted term vector using this similarity matrix. Taking A as an example,
A is weighted vector that has the same number of elements as C. Each element i in A is
set to the sum of all elements in A compared to Ci , using the similarity matrix. The overall
similarity is then determined by taking the cosine similarity of those two weighted vectors.

Ss = A · B
||A|| · ||B||

3.7 Automatic Summary Generation

This section will briefly explain the two automatic summary generation tools we use in this
study to answer RQ4. Each of these approaches were used in our previous work (McBurney
and McMillan 2014), and the reader scores come from that case study.

3.7.1 Sridhara

Sridhara et al. developed an automatic source code summarization tool to describe the
internal workings of a Java method (Sridhara et al. 2010). Sridhara’s approach relies on
generating a Software Word Usage Model (SWUM). SWUM is used to identify, within the
method’s signature and body, identifiers within the code. These identifiers are classified
by part of speech, such as noun, verb, etc. SWUM creates a natural language representa-
tion of the Java method. Sridhara’s approach constructs summaries using natural language
templates. These templates are natural language sentences describing a particular type of
Java statement. The template is “filled in” with keywords generated by the SWUM Model
selected from the summarized statement.

This approach then selects s units, or statements, from the Java method. These s units are
selected based upon their interpreted importance across multiple criteria. For each selected
s units, an associated template is selected and a natural language summary constructed using
information from SWUM. The set of these summaries, each summarizing a different s unit
is then combined and smoothed to create the method summary.

3.7.2 Sumslice

Sumslice, our own previous work (McBurney and McMillan 2014), is an automatic source
code summarization tool that primarily focuses on the interaction between function, rather
than the internal source code that Sridhara’s approach focused on. Sumslice also uses a
Software Word Usage Model (SWUM) to identify keywords and their parts of speech in
the message signature, but does not use a SWUM for the method body. The SWUM of
the method signature is used to create a natural language summary for the purpose of the
method, that is, what action the method performs. How this action is performed is not
summarized by our approach. Instead, we choose to use information about the external
interactions of a method by examining a call graph. A call graph is a graph created where

Empir Software Eng

the nodes, or vertices, are the Java methods, and the edges connecting vertices are directed
edges showing which functions are called by which. By constructing this graph, we can
learn, given a particular method, which other methods are called, and which other methods
call this particular method. Using this information, we create a natural language summary
explaining to the reader the method’s purpose, what methods it is called by, and we can
directly cite a source code example showing how the method is used.

3.8 Statistical Tests

The results of each research question form a set of scores, one for each metric (see
Section 3.6). In RQ1 and RQ2 we use the Mann-Whitney statistical test (Mann and Whitney
1947) to determine significance in results. We selected Mann-Whitney because we cannot
guarantee our results will be distributed normally, so a non-parametric test must be used.
Additionally, our results are unpaired due to the random nature of which readers received
which methods to summarize. Thus, there is no one-to-one relationship between reader sum-
maries and source code, nor is there a one-to-one relationship between reader summaries
and other reader summaries. We use Pearson correlation in RQ3 and RQ4 to determine if
the similarity metrics of the source code to a summary is correlated with reader perceived
accuracy of the summary.

3.9 Threats to Validity

The key source of threats to validity in our study is the data we collect. Because this study
used human experts, it is susceptible to the same threats to validity as other human driven
case studies. Participants may have varying programming experience, or may have experi-
enced fatigue during the study, among other uncontrollable factors. We mitigated the threats
within the case study by seeking diversity among our 23 participants, including students and
professionals. However, we cannot say with certainty that different participants in a similar
study would not result in different findings.

Another source of a threat to validity is that source code often relies on abbreviations and
shorthand versions of longer words. While WordNet may contain common abbreviations
and acronyms, such as “radar” and “ZIP”, as in ZIP Code, source code abbreviations may
often be highly specified to a technical domain, or may be specific to the source code itself.
It is likely, given a large source code project, that several abbreviations will simply not be
found in WordNet. This represents a threat to validity when examining semantic similarity.
This is somewhat mitigated in each of the three approaches we examine, in that all three
approaches also consider string matching, even when a word cannot be found in WordNet.
However, we cannot guarantee a similar study with source code and documentation that
relies heavily on acronyms would produce the same results.

There is a potential bias from the fact that the programmers saw summaries from one
of our three main sources (author, Sridhara, and Sumslice). This is mitigated by our cross-
validation design, ensuring participants saw different summary sources alongside source
code. Therefore, biases resulting from the summary source a participant was given would
be countered by other participants who received a different summary source. However, we
cannot guarantee that a study conducted without the participants being given a summary to
score would produce the same results.

Our results for RQ4 are largely dependent on the two automatic summarization tools we
use. Different automatic summarization tools are very likely to produce different results.
Given this, our results will strictly apply to the summarization tools use. However, the

Empir Software Eng

process of determining the correlation between reader perceived accuracy and a summary’s
similarity to source code would be applicable to other automatic summarization tools not
used here.

Finally, as with any case study that uses existing source code as a corpus, the limitation
of Java programs selected in this study (shown in Table 1) are a source of threats to validity.
It is possible that our results would be unique among the selected six projects, and would not
be repeated on a random selection of other projects. Further, the methods with the projects
selected could present a threat to validity for the same reasons. This threat was mitigated
in the case study by selecting 20 methods randomly from each of the six programs, which
combined had over 19,000 Java methods. The random selection mitigates the introduction
of bias on behalf of the authors of the study.

3.10 Reproducibility

For the purposes of reproduceability and independent study, we have made all evaluation
data and tools for this study available via an online appendix.4

4 Empirical Results

This section presents the results of our empirical study. Our answers for each research
question are presented and supported by our data and interpretation.

4.1 RQ1: Source Code Similarity

This study found strong evidence indicating that source code is statistically more similar to
reader summaries than author summaries.

Figure 3 shows histograms for Overlap percentages (without stop words), LSS scores,
and STASIS scores (without word order). The white bars in the histograms represent similar-
ity between author summaries and source code. The black bars represent similarity between
reader summaries and source code. The overlap histogram shows the similarity between
author summaries and source code having a large number of low overlap percentages. 23
of 82 author summaries have 0 % overlap with the source code. Just 26 of 360 reader sum-
maries have 0 % overlap with the source code. The reader summary overlap percentages
peak in the 40 %–50 % range, while more than half of author summaries have an overlap
percentage less than 20 %. Only 8 % of reader summaries have an overlap percentage less
than 20 %.

The LSS and STASIS (without word order) histograms in Fig. 3 also indicate that reader
summaries are more similar to source code than author summaries. In the LSS histogram,
70 % of reader summaries, when compared to source code, score higher than .9, and 29 %
score higher than .95. Only 58 % of author summaries, when compared to source code, score
higher than .9, and just 10 % score higher than .95. In the STASIS (without word order)
histogram, 54 % of STASIS scores comparing author summaries to source code score less
than .6. Only 46 % of STASIS scores comparing reader summaries to source code score less
than .6.

We use the Mann-Whitney statistical analysis to test the null hypotheses:

4http://www.nd.edu/∼pmcburne/sumalyze/

http://www.nd.edu/~pmcburne/sumalyze/

Empir Software Eng

Fig. 3 These histograms illustrate the distribution of similarity scores. White bars are scores from comparing
author summaries to source code. Black bars are scores from comparing reader summaries to source code.
The overlap percentage without stop words histogram (top left) clearly shows that reader summaries have
more overlap with source code than author summaries. LSS (top right) and STASIS without word order
(bottom) also show reader summaries being more similar to source code than author summaries

H0 Source code is not significantly more or less similar to author summaries as it is to
reader summaries, when similarity is measured using metric.

Metric is a placeholder for Overlap with and without stop words, LSS, and STASIS with
and without word order. As a result of this, we have five null hypotheses to test.

Our Mann-Whitney tests in Table 3 confirm what our histograms suggest. Reader sum-
maries are statistically more similar to source code using Overlap with stop words, Overlap
without stop words, and LSS than author summaries. STASIS, however, gives mixed results.
For STASIS (with word order) we cannot reject the null hypothesis the difference between
the similarity of reader summaries to source code and the similarity of author summaries and
source code is not statistically significant, as the p-value is greater than α = .05. However,
the Mann-Whitney test for STASIS (without word order) indicates, with a p-value <.0001,
that reader summaries are statistically more similar to source code than author summaries.

Four of our five metrics show statistically via Mann-Whitney test that reader summaries
are more similar to source code than author summaries are to source code. The lack of
significance for STASIS (with word order) cannot justify disregarding the other four metrics
being significantly different. Therefore, our answer for RQ1 is that source code is more
similar to reader summaries than author summaries.

4.2 RQ2: Reader Similarity

Our results for RQ2 are inconclusive: our statistical tests provide conflicting results, so
we are unable to claim with certainty whether reader summaries are more similar to other
readers or source code.

The results of our histogram analysis are conflicting. The histogram for LSS scores in
Fig. 4 suggests a higher similarity between reader summaries and source code than reader

Empir Software Eng

Ta
bl

e
3

St
at

is
ti

ca
ls

um
m

ar
y

fo
r
R

Q
1

an
d

R
Q

2

R
Q

So
ur

ce
C

om
p.

M
et

ri
c

n
M

ed
ia

n
M

ea
n

V
ar

U
U

ex
pt

U
va

ri
Z

Z
cr

it
p

D
ec

is
io

n
W

in
ne

r

R
Q

1
So

ur
ce

A
ut

ho
r

O
ve

rl
ap

(w
/

81
0.

14
3

0.
19

3
0.

03
2

10
54

4
14

54
0

10
67

23
8

3.
87

1.
96

<
1e

-3
R

ej
ec

t
R

ea
de

r

R
ea

de
r

st
op

w
or

ds
)

35
9

0.
25

9
0.

27
3

0.
02

7

A
ut

ho
r

O
ve

rl
ap

(w
/o

81
0.

12
1

0.
18

7
0.

03
4

73
22

14
54

0
10

65
20

3
6.

99
1.

96
<

1e
-3

R
ej

ec
t

R
ea

de
r

R
ea

de
r

st
op

w
or

ds
)

35
9

0.
37

5
0.

37
2

0.
20

3

A
ut

ho
r

L
SS

81
0.

91
2

0.
87

6
0.

00
9

10
83

6
14

54
0

10
68

65
3

3.
58

1.
96

<
1e

-3
R

ej
ec

t
R

ea
de

r

R
ea

de
r

35
9

0.
92

6
0.

91
4

0.
00

3

A
ut

ho
r

ST
A

SI
S

(w
/

81
0.

60
0

0.
57

4
0.

01
8

14
41

5
14

54
0

10
68

65
3

0.
12

1.
96

0.
90

5
N

ot
N

/A

R
ea

de
r

w
or

d
or

de
r)

35
9

0.
59

0
0.

58
5

0.
01

3
R

ej
ec

t

A
ut

ho
r

ST
A

SI
S

(w
/o

81
0.

59
8

0.
56

1
0.

02
6

12
26

7
14

53
9

10
68

65
3

2.
20

1.
96

0.
02

8
R

ej
ec

t
R

ea
de

r

R
ea

de
r

w
or

d
or

de
r)

35
9

0.
61

7
0.

61
1

0.
01

4

R
Q

2
R

ea
de

r
So

ur
ce

O
ve

rl
ap

(w
/

35
9

0.
29

6
0.

27
3

0.
02

7
15

39
32

11
27

26
18

54
81

00
9.

57
1.

96
<

1e
-3

R
ej

ec
t

R
ea

de
rs

R
ea

de
rs

w
or

d
or

de
r)

62
8

0.
37

5
0.

38
5

0.
03

9

So
ur

ce
O

ve
rl

ap
(w

/o
35

9
0.

37
5

0.
37

2
0.

04
1

12
81

52
11

27
26

18
59

89
56

3.
58

1.
96

<
1e

-3
R

ej
ec

t
So

ur
ce

R
ea

de
rs

st
op

w
or

ds
)

62
8

0.
30

0
0.

33
0

0.
04

4

So
ur

ce
L

SS
35

9
0.

92
6

0.
91

4
0.

00
3

65
25

9
56

36
3

63
31

44
3

3.
54

1.
96

<
1e

-3
R

ej
ec

t
So

ur
ce

R
ea

de
rs

31
4

0.
91

4
0.

89
3

0.
00

6

So
ur

ce
ST

A
SI

S
(w

/
35

9
0.

59
0

0.
58

5
0.

01
3

72
76

3
56

36
3

63
31

44
3

6.
52

1.
96

<
1e

-3
R

ej
ec

t
R

ea
de

rs

R
ea

de
rs

w
or

d
or

de
r)

31
4

0.
65

8
0.

64
1

0.
01

3

So
ur

ce
ST

A
SI

S
(w

/o
35

9
0.

61
7

0.
61

1
0.

01
4

67
64

5
56

36
3

63
31

44
4

4.
48

1.
96

<
1e

-3
R

ej
ec

t
R

ea
de

rs

R
ea

de
rs

w
or

d
or

de
r)

31
4

0.
65

0
0.

66
8

0.
01

6

T
he

So
ur

ce
co

lu
m

n
is

th
e

it
em

w
e

ar
e

co
m

pa
ri

ng
ou

r
tw

o
“C

om
p.

”
el

em
en

ts
us

in
g

th
e

sp
ec

if
ie

d
m

et
ri

c.
Fo

r
ex

am
pl

e,
in

ro
w

1,
th

e
w

e
ar

e
co

m
pa

ri
ng

th
e

A
ut

ho
r

to
th

e
So

ur
ce

us
in

g
th

e
O

ve
rl

ap
(w

it
h

st
op

w
or

ds
)

m
et

ri
c.

U
,U

e
x
p
t
,a

nd
U

v
a
r
i

ar
e

M
an

n-
W

hi
tn

ey
te

st
va

lu
es

.D
ec

is
io

n
cr

it
er

ia
ar

e
Z

Z
c
r
it

,a
nd

p.
T

he
W

in
ne

rc
ol

um
n

st
at

es
w

hi
ch

co
m

pa
ri

so
n

it
em

w
as

st
at

is
ti

ca
ll

y
m

or
e

si
m

il
ar

to
th

e
so

ur
ce

fo
r

a
gi

ve
n

m
et

ri
c,

ex
ce

pt
w

he
n

th
er

e
is

no
st

at
is

ti
ca

ld
if

fe
re

nc
e

Empir Software Eng

Fig. 4 These histograms illustrate the distribution of similarity scores. White bars are scores from comparing
reader summaries to other reader summaries. Black bars are scores from comparing reader summaries to
source code. Here, we have conflicting results. The LSS scores (left) seem to show there is more similarity
between reader summaries to source code. However, the STASIS scores (right) shows readers being more
similar to other reader summaries than to source code

summaries compared to other reader summaries. 70.2 % of comparisons between reader
summaries and source code using LSS scored greater than 90 %. Just 58.3 % of LSS scores
comparing reader summaries to source code were greater than 90 %. However, the STASIS
histogram gives the opposite suggestion. Here, the reader summary similarity to other reader
summaries seems shifted rightward compared to the similarity distribution between reader
summaries and source code. Nearly 40 % of comparisons from reader summaries to other
readers scored above .8, compared to just 24 % of comparisons from reader summaries to
source code scoring above .8, implying that reader summaries are more similar to summaries
written by other readers than source code.

We use Mann-Whitney to test the following null hypotheses, with metric being a place-
holder for Overlap with and without stop words, LSS, and STASIS with and without word
order:

H0 Reader summaries are not significantly more or less similar to other reader summaries
than they are to source code, when similarity is measured using metric.
There is no significant difference between the similarity of reader summaries to source
code and reader summaries to other reader summaries using metric.

Our Mann-Whitney tests in Table 3 directly conflict one another. All five tests reject the
null hypothesis that reader summaries are equally similar to source code and other reader
summaries. However, the tests suggest conflicting outcomes. Two of our five tests, LSS
and Overlap (with stop words) had p-values less than .0001 indicating reader summaries
are more similar to source code than to other reader summaries. However, STASIS (with
word order), STASIS (without word order), and Overlap (without stop words) indicate the
opposite. Each of the three tests produced a p-value less than .0001 and indicate that reader
summaries are more similar to other reader summaries than to source code. Because of these
conflicting results, our findings are inconclusive. We cannot make a claim as to whether
reader summaries are more similar to other reader summaries or more similar to source code.

4.3 RQ3: Author Similarity

Our study found evidence to support a moderate to strong positive correlation between the
similarity from author summary to source code and the reader perceived accuracy of the
author summary.

Empir Software Eng

The Overlap Percentage chart in Fig. 5 illustrates the distribution of the Overlap percent-
ages (without stop words) from author summary to source code broken down for each reader
response regarding accuracy. The median overlap percentage when the reader “Strongly
Disagrees” that the author summary was accurate was 0.0 %. This means more than half
of the cases where the reader “Strongly Disagrees” that a summary is accurate, the sum-
mary shared no keywords with the source code. By contrast, when the reader “Strongly
Agrees” the summary is accurate, the median overlap percentage was 24.2 %. The quartile
chart illustrates that the median, as well as the lower and upper quartiles, increases as reader
perceived accuracy increases.

The LSS quartile chart in Fig. 5, also shows an increase in the median similarity
score as reader perceived accuracy increases. The median LSS similarity when the reader
“Strongly Disagrees” that the author’s summary is accurate is .746. By contrast, when the
reader “Strongly Agrees” that the author’s summary is accurate, the median similarity is
.924. The median STASIS score (without word order) also increases as reader perceived
accuracy increases. When the reader “Strongly Disagrees” that the author summary is accu-
rate, the median STASIS score without word order is .341. When the reader “Strongly
Agrees” that the author is accurate, the median score is .543. However, the median STA-
SIS score (without word order) for “Agree” is .547, slightly higher than the median for
“Strongly Agree.”

Fig. 5 These charts show the quartile distribution of Overlap percentages (without stop words) (top), LSS
scores (bottom left), and STASIS scores (without word order) (bottom right) for summaries broken down by
reader perceived accuracy of author summaries. The box shows the upper and lower quartiles, with the black
line showing the median. The small lines above and below the box show the minimum and maximum. Note
that the LSS scores chart uses a different scale. This was done to more precisely illustrate the differences
in scores for each accuracy rating. All three charts show increases in similarity scores as reader perceived
accuracy improves

Empir Software Eng

We perform a Pearson correlation statistic test for the following null hypothesis. As
before, metric is a placeholder for our five similarity metrics:

H0 There is no statistical correlation between reader perceived accuracy of an author sum-
mary and similarity between that author summary and source code when similarity is
measured using metric.

To calculate Pearson correlation, numbers are assigned to the reader accuracy scores.
“Strongly Disagree” is given a value of 1, “Disagree” is given a value of 2, “Agree” is given
a value of 3, and “Strongly Agree” is given a value of 4. In this way, a positive correla-
tion would mean high similarity scores are correlated with high accuracy. The results of our
calculations for Pearson correlation are shown in the author row of Table 4. LSS, Overlap
(with stop words), and Overlap (without stop words) each had a Pearson score greater than
.4, indicating a strong positive correlation. STASIS (with word order) and STASIS (without
word order) both had a Pearson correlation score less than .4 but greater than .3, indicating
a moderate positive correlation.

Our findings provide evidence to suggest that reader perceived accuracy of author sum-
maries is positively correlated with the similarity between author summaries and source
code. Two of our three metrics suggest a strong positive correlation, with the third showing
a moderate correlation. The implications of these findings are discussed in Section 5.

4.4 RQ4: Automated Summary Similarity

Two automatic summarization tools, Sridhara and Sumslice, were studied to see if the
accuracy of an automatically generated summary was correlated with the similarity of that
summary to the source code. Sridhara and Sumslice performed differently when examined
for correlation between source code similarity and summary accuracy. Summaries gener-
ated using Sridhara have a weak positive correlation between perceived reader accuracy and
summary similarity to source code in all five metrics. Summaries generated using Sumslice
did not have a significant correlation between accuracy and similarity to source code for
any of the five metrics.

The distribution of automated summary similarity for Sridhara generated summaries is
shown in Fig. 6. There is an increase in the LSS similarity score from “Strongly Disagree”

Table 4 This table shows the Pearson correlation score between accuracy and the similarity of summary to
source code

Pearson correlation scores

Summary Overlap (w/ Overlap (w/o STASIS (w/ STASIS (w/o LSS

source stop words) stop words) word order) word order)

Author 0.510 0.478 0.377 0.354 0.515

Sridhara 0.238 0.224 0.227 0.245 0.228

Sumslice .042 .041 .168 .174 .035

The similarity of author summaries to source code has a moderate to strong positive correlation with reader
perceived accuracy of a summary for all metrics. The accuracy of summaries generated using Sridhara has
weak positive correlation with accuracy for all metrics. For Sridhara, all five metrics had a Pearson correlation
score greater than .2, but less than .3, indicating a weak positive correlation. The similarity of Sumslice
summaries was not correlated with accuracy for any of the five metrics. The Pearson correlation scores for
all five metrics with Sumslice, while positive, were less than .2, and are therefore not statistically significant

Empir Software Eng

Fig. 6 This charts shows the distribution of LSS scores (left) and STASIS without word order scores (right)
of Sridhara generated summaries broken down by reader perceived accuracy. The box shows the upper and
lower quartiles, with the black line showing the median. The small lines around the box show the minimum
and maximum. Both charts show an upward trend in similarity as accuracy improves, though there is a slight
visible dip in the LSS scores between “Agree” and “Strongly Agree”. The visual evidence suggests a positive
correlation between source code similarity and accuracy for summaries generated by Sridhara

to “Disagree”, and again from “Disagree” to “Agree”. However, there is a decrease in the
median between “Agree” and “Strongly Agree”. A possible reason for this is that readers
“Strongly Agreed” that only 5 of 59 Sridhara generated summaries were accurate, meaning
there was not enough data for a stable conclusion. STASIS (without word order) trends
slightly upward as accuracy improves.

We perform a Pearson correlation test using Sridhara generated summaries to test the
following null hypotheses:

H0 There is no statistical correlation between reader perceived accuracy of an auto-
matically generated summary and similarity between that automatically generated
summary and the source code when similarity is measured using metric.

We found that all five similarity metrics on Sridhara had a Pearson correlation score
between .2 and .3 (see Table 4). This indicates a weak positive correlation between the
similarity of a summary generated by Sridhara and that summary’s accuracy in describing
the source code.

Figure 7 shows the quartile charts for the Overlap (without stop words) and LSS metrics.
The source code similarity of the summary generated by Sumslice is not clearly correlated
to accuracy in these charts. Note that there was only one “Strongly Disagree” accuracy
rating among the 65 Sumslice generated summaries readers were given.

We perform a Pearson correlation test to examine if the reader perceived accuracy of
Sumslice generated summaries is correlated with the similarity of those summaries to source
code. We test the following null hypotheses:

H0 There is no correlation between reader perceived accuracy of an automatically gener-
ated summary using Sumslice and similarity between that summary and source code
with respect to metric.

All five metrics, including both variations of Overlap and STASIS, have a positive Pear-
son correlation score. However, because all of these scores are less than .2, no statistical
statement of correlation can be made. Thus, we cannot reject the null hypothesis that the
similarity of Sumslice generated summaries to source code is not correlated with reader
perceived accuracy of the summary in describing the source code.

Empir Software Eng

Fig. 7 This charts shows the distribution of Overlap (without stop words) percentages (left) and LSS scores
(right) for Sumslice generated summaries broken down by reader perceived accuracy. The box shows the
upper and lower quartiles, with the black line showing the median. The small lines around the box show
the minimum and maximum. There was only one “Strongly Disagree” score. There is no clear visual trend
linking accuracy to similarity in either chart

Our results suggest automatically generated summaries and their similarity to source
code can be correlated with reader perceived accuracy, such as in Sridhara. However, there
may also be no correlation, such as in Sumslice. Based on our findings, we can only suggest
that each summarization tool must be investigated individually. Further discussion of the
impacts of these findings can be found in Section 5.

5 Discussion

In this section, we discuss the impact of our findings. We draw three key conclusions to
guide work in automated source code summarization:

1. Source code documentation should use keywords from source code. We have indepen-
dently validated the assumption on which other approaches have been based.

2. Short text similarity metrics can be used to estimate accuracy for human written
summaries.

3. However, short text similarity metrics do not estimate accuracy for automatically
generated summaries.

Documentation that describes source code should contain the same keywords as the
source code. This suggest that readers believe a “good summary” should use source code
keywords and semantics. The accuracy of author summaries is higher when the summaries
are similar to the source code, as shown in RQ3. Our results showed a strong to moder-
ate positive correlation between accuracy and the similarity of author summaries to source
code. RQ1 however, shows a disparity where author summaries are less similar to source
code than reader summaries in 4 of our 5 metrics. Authors, therefore, can improve their
documentation through the use of keywords from source code in their documentation. This
finding also impacts automatically generated summary tools. Future automatically gener-
ated summary tools should make use of source code word choice and semantics in order to
best communicate the source code readers.

Short text similarity metrics can estimate the accuracy of source code summaries when
those summaries are written by humans. RQ3 demonstrates that high accuracy of author, or
human, written summaries was strongly correlated with high scores in 3 of our 5 similarity

Empir Software Eng

metrics: LSS, Overlap (with stop words), and Overlap (without stop words). High STASIS
(with word order) and STASIS (without word order) scores were moderately correlated
with high accuracy. Automatic comment quality assessment tools, such as Javadoc Miner
(Khamis et al. 2010) would benefit from our findings. Using the similarity of source code
to author summaries can improve Javadoc Miner’s analysis of code/comment consistency.

However, accuracy should not be conflated with overall summary quality. While high
accuracy is considered a component in a good summary (McBurney and McMillan 2014;
Sridhara et al. 2010; Steidl et al. 2013)), other conditions have been suggested. Both our pre-
vious work McBurney and McMillan (2014) and Sridhara et al. (2010) examine a summary
with respect to conciseness and content adequacy. A concise summary is one that contains
little or no unnecessary information. A content adequate summary is one that contains all
necessary information. Sridhara et al., noticed that the relationship between conciseness and
content adequacy is similar to the relationship between precision and recall. Steidl et al.
(2013) use their own set of conditions to assess comment quality. Some of these conditions
cannot be automated by relying on short text similarity metrics.

For an example, consider the Java method shown in Fig. 8 with the given author sum-
mary. The author summary focuses on the high-level view of the method. This summary
accurately describes the high-level idea behind the method, which is to determine if an entity
object is external. A reader may write a summary such as “Set obj equal to the entity ‘name’.
If obj is an instance of a String, return false.” This summary is accurate, but does not com-
municate high-level functionality. This low-level summary is more textually similar to the
method than the author summary. This is an example of when higher textual similarity does
not result in a higher quality summary. Both summaries are accurate, but the author sum-
mary would be more useful to a reader. This shows that accuracy, while important, cannot
substitute for overall comment quality. Nevertheless, textual similarity can inform method
summary quality, as shown in our findings.

Short text similarity metrics do not effectively estimate accuracy for automatically gener-
ated summaries. In RQ4, we found that the similarity of Sridhara summaries to source code
was only weakly correlated to accuracy across all 5 metrics. Contrast this with RQ3, where
accuracy was moderately or strongly correlated with the similarity of author summaries to
source code across all 5 metrics. The similarity of source code to Sumslice summaries was
not significantly correlated with accuracy in any of the 5 metrics. One possible explanation
is that readers took issue with grammar or writing style in both Sridhara and Sumslice. Par-
ticipants in our previous study frequently mentioned this for both summarization tools in
our previous work (McBurney and McMillan 2014). Errors in natural language generation
for automatically generated summaries may more significantly affect reader perception than

Fig. 8 This is the source code and author summary for the isExternalEntity() method in the XMLEntityRe-
solver class of NanoXML. The authors give a high level summary that describes the methods functionality.
However, the summary is only somewhat textually similar to the source code. This poses a unique problem
to our approach

Empir Software Eng

the summary’s content. However, we cannot be sure if improving natural language would
result in a strong correlation between accuracy and the similarity of source code to automat-
ically generated summaries. Examining this question is beyond the scope of this paper. The
lack of correlation between accuracy and source code similarity to Sumslice in particular
may be caused by Sumslice summaries focusing on the external interaction between Java
methods, rather than focusing on how a method works internally. However, we cannot say
for certain that this is the reason for the lack of correlation for Sumslice summaries.

6 Related Work

There are three areas of software engineering literature that are related to our work: studies
of program comprehension, source code comment quality metrics, and automated source
code summarization. We present the most-related of those approaches in this section.

6.1 Program Comprehension

Different studies have been published in program comprehension over several decades.
These studies consistently show that programmers follow either a “systemic” strategy for
understanding source code, or an “opportunistic” one (Ko and Myers 2005; Littman et al.
1987; Brandt et al. 2010; Kotonya et al. 2008; Davison et al. 2000; Lakhotia 1993; Holmes
and Walker 2013; Ko et al. 2006). The difference between these two strategies is that in a
systemic strategy, programmers try to understand how the components of a program inter-
act, while in an opportunistic strategy, programmers only seek to understand how to modify
a small section of code. These studies are relevant to our work in that they provide clues
about how programmers will read source code, but they do not provide guidance on how
the programmers summarize source code. One recent study does suggest that programmers
only turn to documentation after they have attempted face-to-face communication (Roehm
et al. 2012). This study would seem to suggest that summarization tools mimic the types
of information developers seek during face-to-face conversations. Some studies indicate
that this information tends to be about the interactions between different components in
source code (Stylos and Myers 2006; Holmes and Walker 2013). Meanwhile, other studies
point to evidence that documentation should contain primarily high-level concepts about
source code (Lethbridge et al. 2003). Studies of note-taking among programmers suggest a
mixed view, that summaries should contain details about code sections and high-level con-
cepts (Guzzi 2012). Our work adds to this body of knowledge by targetting the problem of
summarization, and presenting guidance for designers of source code summarization tools.

6.2 Source Code Comment Quality

Two recent studies highlight the problem of quality in source code comments. Steidl et al.
(2013) present an automated approach for measuring comment quality based on four factors:
coherence, usefulness, completeness, and consistency. The approach estimated these factors
by calculating the textual similarity between the comments and the code, and also the length
of each comment. The idea is that long comments which are textually similar to the code
are considered “high quality” comments. Short comments that are not textually similar are
not considered to have lower quality. That approach is similar to work by Khamis et al.
(2010), in which textually similar comments are considered to have higher quality. Our
work is related to these approaches in that it tests the same underlying assumption: that high

Empir Software Eng

quality comments are similar to source code. Unlike previous work, we empirically test this
assumption for summaries written by human experts, as well as summaries written by two
different automatic source code summarization tools.

6.3 Source Code Summarization Tools

In addition to the tools use in our study (see Section 3.7), a small number of automatic
source code summarization tools have been proposed. Haiduc et al., in work that has been
independently verified (Eddy et al. 2013), suggest using a Vector Space Model approach to
extract important keywords from source code (Haiduc et al. 2010). Moreno et al. propose an
approach, based on work by Sridhara et al. (2010, 2011b), that matches Java classes to Java
class stereotypes, and uses different templates depending on the stereotype (Moreno et al.
2013). Earlier work by Buse et al. has focused on Java Exceptions (Buse and Weimer 2008)
and change logs (Buse and Weimer 2010). An assumption common to these approaches is
that the source code summaries can be created from the source code itself. Our work is
related to these approaches in that we test this assumption and provide guidance for future
development of these tools.

7 Conclusion

We have presented an empirical study exploring the similarity between author summaries,
reader summaries, and source code. Our study is novel in that we use Short Text Seman-
tic Similarity (STSS) metrics to examine these similarities, specifically Overlap, LSS, and
STASIS. We found that readers use source code in their summaries more than authors.
We also found that STSS between source code and human written summaries can estimate
the accuracy of summaries as perceived by readers. This addresses a gap in literature by
showing that a “good summary” written by an author should have high semantic similarity
to source code. Automatically generated summaries, however, were inconsistent, and their
similarity to source code could not consistently estimate reader perceived accuracy.

Acknowledgments The authors would like to thank David Croft for furnishing an LSS implementation.
We would also like to thank the 23 participants of the case studies on which this paper is based for their time
and efforts.

References

Biggersta TJ, Mitbander BG, Webster D (1993) The concept assignment problem in program understanding.
In: Proceedings of the 15th international conference on soft-ware engineering, ICSE ’93. IEEE Computer
Society Press, Los Alamitos, pp 482–498. http://dl.acm.org/citation.cfm?id=257572.257679

Brandt J, Dontcheva M, Weskamp M, Klemmer SR (2010) Example-centric programming: integrating web
search into the development environment. In: Proceedings ofthe 28th international conference on human
factors in computing systems, CHI ’10. ACM, New York, pp 513–522. doi:10.1145/1753326.1753402

Burden H, Heldal R (2011) Natural language generation from class diagrams. In: Proceedings of the 8th
international workshop on model-driven engineering, verication and validation, MoDeVVa. ACM, New
York, pp 8:1–8:8. doi:10.1145/2095654.2095665

Buse RP, Weimer WR (2008) Automatic documentation inference for exceptions. In: Proceedings of the 2008
international symposium on software testing and analysis, ISSTA ’08. ACM, New York, pp 273–282.
doi:10.1145/1390630.1390664

http://dl.acm.org/citation.cfm?id=257572.257679
http://doi.acm.org/10.1145/1753326.1753402
http://doi.acm.org/10.1145/2095654.2095665
http://doi.acm.org/10.1145/1390630.1390664

Empir Software Eng

Buse RP, Weimer WR (2010) Automatically documenting program changes. In: Proceedings of the
IEEE/ACM international conference on Automated software engineering, ASE ’10. ACM, New York,
pp 33–42. doi:10.1145/1858996.1859005

Croft D, Coupland S, Shell J, Brown S (2013) A fast and efficient semantic short text similarity
metric. In: Proceedings of the 13th UK workshop on computational intelligence, UKCI ’13, pp 221–
227

Davison JW, Mancl DM, Opdyke WF (2000) Understanding and addressing the essential costs of evolving
systems. Bell Labs Tech J 5(2):44–54

de Souza SCB, Anquetil N, de Oliveira KM (2005) A study of the documentation essential to software
maintenance. In: Proceedings of the 23rd annual international conference on design of communica-
tion: documenting & designing for pervasive information, SIG-DOC ’05. ACM, New York, pp 68–75.
doi:10.1145/1085313.1085331

Eddy B, Robinson J, Kraft N, Carver J (2013) Evaluating source code summarization techniques: replica-
tion and expansion. In: Proceedings of the 21st international conference on program comprehension,
ICPC ’13

Fluri B, Wursch M, Gall HC (2007) Do code and comments co-evolve? On the relation between source code
and comment changes. In: Proceedings of the 14th working conference on reverse engineering, WCRE
’07, IEEE Computer Society, Washington, DC, pp 70–79. doi:10.1109/WCRE.2007.21

Forward A, Lethbridge TC (2002) The relevance of software documentation, tools and technologies: a survey.
In: Proceedings of the 2002 ACM symposium on document engineering, DocEng ’02. ACM, New York,
pp 26–33. doi:10.1145/585058.585065

Guzzi A (2012) Documenting and sharing knowledge about code. In: Proceedings of the 2012 international
conference on software engineering, ICSE 2012. IEEE Press, Piscataway, pp 1535–1538. http://dl.acm.
org/citation.cfm?id=2337223.2337476

Haiduc S, Aponte J, Moreno L, Marcus A (2010) On the use of automated text summarization techniques for
summarizing source code. In: Proceedings of the 2010 17th working conference on reverse engineering,
WCRE ’10. IEEE Computer Society, Washington, DC, pp 35–44. doi:10.1109/WCRE.2010.13

Holmes R, Walker RJ (2013) Systematizing pragmatic software reuse. ACM Trans Softw Eng Methodol
21(4):20:1–20:44. doi:10.1145/2377656.2377657

Ibrahim WM, Bettenburg N, Adams B, Hassan AE (2012) Controversy corner: on the relation-
ship between comment update practices and software bugs. J Syst Softw 85(10):2293–2304.
doi:10.1016/j.jss.2011.09.019

Kajko-Mattsson M (2005) A survey of documentation practice within corrective maintenance. Empir Softw
Eng 10(1):31–55. doi:10.1023/B:LIDA.0000048322.42751.ca

Khamis N, Witte R, Rilling J (2010) Automatic quality assessment of source code comments: the
JavadocMiner. In: Hopfe CJ, Rezgui Y, Métais EM, Preece AD, Li H (eds) 15th international conference
on applications of natural language to information systems (NLDB 2010). Lecture Notes in Computer
Science (LNCS), vol 6177/2010. Springer, Cardi, pp 68–79. doi:10.1007/978-3-642-13881 27. http://
www.springerlink.com/content/n67470n270mt61m1/fulltext.pdf

Ko AJ, Myers BA (2005) A framework and methodology for studying the causes of software errors in
programming systems. J Vis Lang Comput 16(12):41–84. doi:10.1016/j.jvlc.2004.08.003. http://www.
sciencedirect.com/science/article/pii/S1045926X04000394

Ko AJ, Myers BA, Coblenz MJ, Aung HH (2006) An exploratory study of how developers seek, relate, and
collect relevant information during software maintenance tasks. IEEE Trans Softw Eng 32(12):971–987.
doi:10.1109/TSE.2006.116

Kotonya G, Lock S, Mariani J (2008) Opportunistic reuse: lessons from scrapheap software development. In:
Proceedings of the 11th international symposium on component-based software engineering, CBSE ’08.
Springer, Berlin, pp 302–309. doi:10.1007/978-3-540-87891-9 20

Kramer D (1999) Api documentation from source code comments: a case study of javadoc. In: Proceedings
of the 17th annual international conference on computer documentation, SIGDOC ’99. ACM, New York,
pp 147–153. doi:10.1145/318372.318577

Lakhotia A (1993) Understanding someone else’s code: analysis of experiences. J Syst Softw 23(3):269–275.
doi:10.1016/0164-1212(93)90101-3

Lethbridge T, Singer J, Forward A (2003) How software engineers use documentation: the state of the
practice. IEEE Softw 20(6):35–39. doi:10.1109/MS.2003.1241364

Li Y, Bandar ZA, McLean D (2003) An approach for measuring semantic similarity between
words using multiple information sources. IEEE Trans Knowl Data Eng 15(4):871–882.
doi:10.1109/TKDE.2003.1209005

Li Y, McLean D, Bandar ZA, O’Shea JD, Crockett K (2006) Sentence similarity based on semantic nets and
corpus statistics. IEEE Trans Knowl Data Eng 18(8):1138–1150. doi:10.1109/TKDE.2006.130

http://doi.acm.org/10.1145/1858996.1859005
http://doi.acm.org/10.1145/1085313.1085331
http://dx.doi.org/10.1109/WCRE.2007.21
http://doi.acm.org/10.1145/585058.585065
http://dl.acm.org/citation.cfm?id=2337223.2337476
http://dl.acm.org/citation.cfm?id=2337223.2337476
http://dx.doi.org/10.1109/WCRE.2010.13
http://doi.acm.org/10.1145/2377656.2377657
http://dx.doi.org/10.1016/j.jss.2011.09.019
http://dx.doi.org/10.1023/B:LIDA.0000048322.42751.ca
http://dx.doi.org/10.1007/978-3-642-13881_27
http://www.springerlink.com/content/n67470n270mt61m1/fulltext.pdf
http://www.springerlink.com/content/n67470n270mt61m1/fulltext.pdf
http://dx.doi.org/10.1016/j.jvlc.2004.08.003
http://www.sciencedirect.com/science/article/pii/S1045926X04000394
http://www.sciencedirect.com/science/article/pii/S1045926X04000394
http://dx.doi.org/10.1109/TSE.2006.116
http://dx.doi.org/10.1007/978-3-540-87891-9_20
http://doi.acm.org/10.1145/318372.318577
http://dx.doi.org/10.1016/0164-1212(93)90101-3
http://dx.doi.org/10.1109/MS.2003.1241364
http://dx.doi.org/10.1109/TKDE.2003.1209005
http://doi.ieeecomputersociety.org/10.1109/TKDE.2006.130

Empir Software Eng

Liblit B, Begel A, Sweeser E (2006) Cognitive perspectives on the role of naming in computer programs.
In: Proceedings of the 18th annual psychology of programming workshop. Psychology of Programming
Interest Group, Sussex

Littman DC, Pinto J, Letovsky S, Soloway E (1987) Mental models and software maintenance. J
Syst Softw 7(4):341–355. doi:10.1016/0164-1212(87)90033-1. http://www.sciencedirect.com/science/
article/pii/0164121287900331

Mani S, Catherine R, Sinha VS, Dubey A (2012) Ausum: approach for unsupervised bug report summa-
rization. In: Proceedings of the ACM SIGSOFT 20th international symposium on the foundations of
software engineering, FSE ’12. ACM, New York, pp 11:1–11:11. doi:10.1145/2393596.2393607

Mann H, Whitney D (1947) On a test of whether one of two random variables is stochastically larger than
the other. Ann Math Stat 18(1):50–60

McBurney PW, McMillan C (2014) Automatic documentation generation via source code summariza-
tion of method context. To appear in proceedings of the 22nd international conference on program
comprehension, ICPC ’14. New York, pp 1–10

Miller GA (1995) Wordnet: a lexical database for english. Commun ACM 38:39–41
Moreno L, Aponte J, Giriprasad S, Marcus A, Pollock L, Vijay-Shanker K (2013) Automatic generation

of natural language summaries for java classes. In: Proceedings of the 21st international conference on
program comprehension, ICPC ’13

Roehm T, Tiarks R, Koschke R, Maalej W (2012) How do professional developers comprehend software?
In: Proceedings of the 2012 international conference on software engineering, ICSE 2012. IEEE Press,
Piscataway, pp 255–265. http://dl.acm.org/citation.cfm?id=2337223.2337254

Singer J, Lethbridge T, Vinson N, Anquetil N (1997) An examination of software engineering work practices.
In: Proceedings of the 1997 conference of the centre for advanced studies on collaborative research,
CASCON ’97. IBM Press, p 21. http://dl.acm.org/citation.cfm?id=782010.782031

Sridhara G, Hill E, Muppaneni D, Pollock L, Vijay-Shanker K (2010) Towards automatically generating
summary comments for java methods. In: Proceedings of the IEEE/ACM international conference on
automated software engineering, ASE ’10. ACM, New York, pp 43–52. doi:10.1145/1858996.1859006

Sridhara G, Pollock L, Vijay-Shanker K (2011a) Automatically detecting and describing high level actions
within methods. In: Proceedings of the 33rd international conference on software engineering, ICSE ’11.
ACM, New York, pp 101–110. doi:10.1145/1985793.1985808

Sridhara G, Pollock L, Vijay-Shanker K (2011b) Generating parameter comments and integrating with
method summaries. In: Proceedings of the 2011 IEEE 19th international conference on program com-
prehension, ICPC ’11. IEEE Computer Society, Washington, DC, pp 71–80. doi:10.1109/ICPC.2011.28

Steidl D, Hummel B, Juergens E (2013) Quality analysis of source code comments. In: Proceedings of the
21st international conference on program comprehension, ICPC ’13

Stylos J, Myers BA (2006) Mica: a web-search tool for finding api components and examples.
In: Proceedings of the visual languages and human-centric computing, VL-HCC ’06. IEEE Computer
Society, Washington, DC, pp 195–202. doi:10.1109/VLHCC.2006.32

Paul W. McBurney is a graduate research assistant at the University of Notre Dame. He completed his
Master’s Degree at West Virginia University in 2012. His focus is on source code summarization and program
comprehension. He received the Best Paper Award at ICPC 2014. He is a GAANN fellow.

http://dx.doi.org/10.1016/0164-1212(87)90033-1
http://www.sciencedirect.com/science/article/pii/0164121287900331
http://www.sciencedirect.com/science/article/pii/0164121287900331
http://doi.acm.org/10.1145/2393596.2393607
http://dl.acm.org/citation.cfm?id=2337223.2337254
http://dl.acm.org/citation.cfm?id=782010.782031
http://doi.acm.org/10.1145/1858996.1859006
http://doi.acm.org/10.1145/1985793.1985808
http://dx.doi.org/10.1109/ICPC.2011.28
http://dx.doi.org/10.1109/VLHCC.2006.32

Empir Software Eng

Collin McMillan is an Assistant Professor at the University of Notre Dame. He completed his Ph.D. in 2012
at the College of William & Mary, focusing on source code search and traceability technologies for program
reuse and comprehension. Since joining Notre Dame, his work has focused on source code summarization
and efficient reuse of executable code. Dr. McMillan’s work has been supported by SimVentions Inc. and the
Virginia Space Grant Consortium, and recognized by the Stephen K. Park Award.

	An empirical study of the textual similarity between source code and source code summaries
	Abstract
	Introduction
	The Problem
	Empirical Study Design
	Research Questions
	Methodology
	Data Collection
	Pre-processing
	WordNet
	Metrics
	Overlap
	STASIS
	LSS

	Automatic Summary Generation
	Sridhara
	Sumslice

	Statistical Tests
	Threats to Validity
	Reproducibility

	Empirical Results
	RQ1: Source Code Similarity
	RQ2: Reader Similarity
	RQ3: Author Similarity
	RQ4: Automated Summary Similarity

	Discussion
	Related Work
	Program Comprehension
	Source Code Comment Quality
	Source Code Summarization Tools

	Conclusion
	Acknowledgments
	References

