
JOURNAL OF SOFTWARE: EVOLUTION AND PROCESS
J. Softw. Evol. and Proc. 0000; 00:1–27
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/smr

Automated Feature Discovery via Sentence Selection and Source
Code Summarization

Paul W. McBurney∗ and Cheng Liu and Collin McMillan

Department of Computer Science and Engineering
University of Notre Dame
Notre Dame, IN, USA

{pmcburne, cliu7, cmc}@nd.edu

SUMMARY

Programs are, in essence, a collection of implemented features. Feature Discovery in software
engineering is the task of identifying key functionalities that a program implements. Manual feature
discovery can be time-consuming and expensive, leading to automatic feature discovery tools being
developed. However, these approaches typically only describe features using lists of keywords, which
can be difficult for readers who are not already familiar with the source code. An alternative to
keyword lists is sentence selection, in which one sentence is chosen from among the sentences in a
text document, to describe that document. Sentence selection has been widely studied in the context
of natural language summarization, but is only beginning to be explored as a solution to feature
discovery. In this paper, we compare four sentence selection strategies for the purpose of feature
discovery. Two are off-the-shelf approaches, while two are adaptations we propose. We present our
findings as guidelines and recommendations to designers of feature discovery tools. Copyright c© 0000
John Wiley & Sons, Ltd.

Received . . .

1. INTRODUCTION

Feature discovery in software engineering is the task of identifying the key functionality that a
program implements [13, 31]. A “feature” is defined as a user-visible characteristic about the
behavior of a program (e.g., “plays mp3 files”) [6]. The notion of a feature is important because
programs are often thought of as implementing sets of features: Software engineers determine
what features to implement through domain analysis [19] and requirements elicitation [15].
Engineers link feature descriptions to various software artifacts through traceability [26].
Acceptance testing confirms that software implements a required set of features [3]. And
regulatory requirements often dictate that specific features be implemented for safety or privacy
reasons [7]. In all these areas, feature discovery is a critical task because of the need to know
what features a given piece of software implements.

Unfortunately, at present feature discovery is a largely manual process. Programmers
typically have three options for feature discovery [41]: First, programmers may turn to
software documentation, such as requirements documents. Second, programmers may read the
source code of the program, and execute the code with different inputs. Third, programmers
may communicate directly with the authors of the source code. In the ideal case, the
documentation will include an explicit list of features. But the ideal case is often not realistic
because the feature lists are often either out-of-date or incomplete [11, 18]. The alternative
of communicating with the code authors is also often not realistic, since the authors may
not even be known [41]. Therefore, programmers conducting feature discovery are forced to

Copyright c© 0000 John Wiley & Sons, Ltd.

Prepared using smrauth.cls [Version: 2012/07/12 v2.10]

2

manually read the source code or interact with the program. This manual feature discovery
process is often extremely expensive, such as in domain analysis where tens or even hundreds
of programs must be processed [13, 19].

Automated techniques for feature discovery have been proposed as an alternative to the
manual approach [13, 50, 8, 21, 27, 38, 49]. The most-common strategy that has been found to
be effective is to use a topic model such as Latent Dirichlet Allocation (LDA) to extract groups
of keywords that are associated with different functionality [12]. This strategy will produce lists
of keywords ostensibly linked to different features, for example “sound mp3 wav midi” versus
“save load file open”. The advantage to these approaches is that links are preserved between
the lists of keywords and the source code that contains those keywords. The programmer can
use these links to roughly divide the program into groups of code that implement different
features – some sections of code will be more-related to the “sound mp3 wav midi” feature
than the “save load file open” feature.

But the disadvantage is that the groups of keywords are difficult to understand without
already understanding the source code. For example, the keywords “sound mp3 wav midi”
indicate that some audio functionality is implemented, but the details are obscure. It is difficult
to know whether the program plays those file formats, or handles streaming them across
a network, or possibly converting from one format to another. Existing automated feature
discovery techniques are effective at organizing programs into categories of functionality, but
are much less able to provide lists of features that are readable in isolation, without also reading
the source code.

In this paper, we compare four sentence selection strategies as automated feature discovery
techniques. These techniques produce readable, natural-language sentences about software.
The input to the techniques is the source code documentation, in the form of Javadocs, of a
program. The output is a list of features in which each feature is described by one sentence. The
techniques work by using a sentence selection algorithm to extract one sentence for each of the
groups of keywords extracted by a topic model. Where Javadocs documentation is available,
the tools select sentences from this documentation. Two of the sentence selection algorithms
we examine have been proposed and evaluated elsewhere. Two others we adapt from related
tools and propose as alternatives. Further, we conduct a follow-up study to improve the results
of our Overlap approach.

We found that current methods to generating natural language feature lists from
software documentation currently do not meet programmer expectations. However our two
proposed approaches are preferred when compared directly to existing textual summarization
approaches. Additionally, we found that our overlap approach can be effective in giving
programmers an idea of the purpose of a given program. Our work lays a foundation for future
work in feature discovery by providing four approaches to generating natural language feature
lists. Finally, the data for our work is presented in an online appendix∗ for reproducibility.

2. THE PROBLEM

We address the following gap in the literature regarding program comprehension: there
currently exists no fully automatic approach to generate human readable natural language
features lists of existing software engineering projects, that have been shown to meet quality
standards sufficient for use by programmers. Understanding the features of a software project
is necessary for using the project correctly [6, 41]. Manually written documentation can suffer
from a number of problems. Manual documentation is time-consuming and expensive to write,
leading the documentation to often be incomplete [11, 18] or outdated [14, 42]. Automatic
approaches to describe features have produced short keywords that describe features in the

∗http://www.nd.edu/~pmcburne/features/

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

http://www.nd.edu/~pmcburne/features/

3

source code, such as ”sound mp3 wave midi.” However, these descriptions often lack enough
specificity to help the reader understand the context of the given keywords.

Natural language sentences that describe features could provide more clear and specific
understanding of the features to programmers. Currently, there are a small number fully
automatic approaches that summarize Java projects at the method-level granularity using
natural language sentences [45, 44, 29]. Additionally, Moreno et al. [36, 35] generate natural
language summaries to describe Java classes by identifying class stereotypes. However, to the
best of our knowledge, no such tools exist to describe the project-level granularity in natural
language sentences. In this paper, we target the problem of describing the features at the
system-level granularity of software tools. Natural language features lists could greatly assist
programmers in feature discovery, helping to alleviate the large manual effort [13, 19] that
programmers currently must put forth to understand a project. Such a tool could reduce effort
required in several steps of the software engineering process, such as domain analysis [19],
requirements elicitation [15], acceptance testing [3], et al. Our work is intended to be a
foundation for automatically generating natural language feature lists.

3. BACKGROUND

This section examines the background of feature discovery. Additionally, this section describes
relevant tools to our approach and study. These tools are LSS, LDA, and TLDR.

3.1. Feature Discovery

Feature Discovery is using available software resources, such as documentation, bug reports,
and requirements documents, to identify features in a software project. Requirements
documents exist to specify features in a project. However, as projects develop over time,
features may be added or dropped. This results in documentation becoming outdated or
incomplete for the purposes of feature discovery [11, 18]. Automatic approaches to feature
discovery have emerged to address this shortcoming. Several different types of approaches have
been used for feature discovery, including conditional compilation [8], text mining available
documentation [13, 12, 21, 27], and using available software labels [49]. Related to feature
discovery is feature location, where the source code relevant to a particular feature is searched
for [50]. In the vein of feature discovery, Sridhara et al. presented an approach that identifies
portions of source code that describe high-level actions in a given project [43]. Our work
contributes to feature discovery by mining software documentation in the form of JavaDocs.

3.2. LDA

LDA (Latent Dirichlet Allocation), described by Blei et al. [5] is a topic modeling technique
to describe a document as a set of topics. Each topic is made up of a list of keywords that can
be used to describe the topic. For example, a topic with the keywords “sound mp3 wav midi”
would likely encompass portions of a document that address audio files. LDA has become
the most-common strategy to extract keywords in order to produce feature lists [12, 21].
Additionally, LDA has been applied to a large number of other software engineering problems
including software traceability [1, 25, 37], source code analysis [16, 4], defect prediction [23],
and software repository mining [47, 48].

LDA can take a set of documents, or a corpus, such as source code documentation for
different methods, and derive topics to describe the set of documents. Each topic is made
up of several probabilistic keywords, where each keyword has a different weight describing
how important it is to the topic. The keywords are pulled from the individual words in the
documents, with the topics being created based on co-occurrence of words. Words that occur
frequently together are likely to be part of the same topic.

Initially, a user specifies number of topics, n, to be generated. LDA works by first iterating
through each document. Each keyword in each document is randomly assigned to one of the n

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

4

topics. Then, for each document d, we iterate through each word w. For each word, we compute
the probability that w appears in the topic t, and that the topic t appears in document d. Word
w is then assigned to a new topic where the probability of the word being in the new topic is
the highest. After a large iterations over the corpus of documents, the topics will become more
stable, with fewer words being ”moved” around from topic to topic. At this point the topics
will contain lists of commonly occurring words.

LDA has several tunable parameters that must be assessed carefully [4]. First, an LDA user
must choose the number of topics to create from a corpus of documents. Each corpus must
be considered individually. If the number of topics is too large, the topics become unstable,
noisy, and too specific to be useful. If the number of topics is too small, key information may
be lost, and incompatible concepts may be meshed into a single topic.

Two more parameters in LDA that must be tuned are α and β. α refers to the the strength
of the prior belief that all the topics are uniformly distributed throughout the documents. A
large α assumes that each document contains a large number of topics. A small α assumes that
each document is made mostly of a small number of topics. A large α therefore encourages
simple topics with a small number of important keywords [4]. β affects the number of words per
topic. A smaller β results in topics containing fewer keywords. A larger β results in topics that
contain multiple important keywords. These parameters will be tuned differently depending
on the goal of the topic model [4]. In feature location, a larger α would be preferable, as it
would encourage more topics-per-document, and increase the recall of identifying the topic
within relevant sections of code [4].

3.3. LDA-GA

The LDA Genetic Algorithm (LDA-GA) is an algorithm developed by Panichella et al. [38] that
determines a near-optimal set of LDA input parameters for a given project. The parameters
LDA-GA recommends are α, β, number of topics, and number of iterations. LDA-GA does
this by using genetic algorithms to randomly generate, combine, and mutate different LDA
input configurations. LDA starts with a set of randomly generated parameters, which can fit
a range specified by a user. For example, a user may specify that they want an α no less than
.1 and no greater than .9. Additionally, users can set a minimum and maximum number of
allowable topics. LDA is then run for each set of random input parameters. Each configuration
is then scored on a fitness function. This fitness function scores a configuration based on the
topics that configuration produces. Topics that are cohesive, where documents that most fit
into the topics are most similar, are considered better. Additionally, a high separation, where
documents are dissimilar to the average of documents in another topic, is preferable. The most
fit LDA configurations are then used to generate the next generation. These configurations are
combined with a small chance for a random mutation. After several generations, the population
with stabilize around a particular near-optimal configuration of input parameters. These input
parameters can then be used to run LDA on the system.

3.4. LSS

LSS (Lightweight Semantic Similarity) is a metric to determine the similarity two small pieces
of text developed by Croft et al [9]. LSS was designed to compare two short text items
regardless of whether or not they have sentence structure. Specifically, LSS was originally
used to compare captions of photographs to determine whether two pictures were on a similar
topic. LSS determines the similarity between two pieces of text by considering word semantics.
Semantics, in this case, refers to considering the word’s meaning, rather than only considering
its literal text.

For example, according to LSS, a sentence “This method plays a sound file” would be
semantically very similar to “This function plays an audio item.” Even though the literal
words in each sentence are not the same, the semantics, or meanings, of these words are nearly
identical. These two sentences would be more similar to each other than a sentence like “This

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

5

method calculates the square root of the input,” which has nearly no semantic similarity other
than referring to the existence of a method.

LSS judges semantic similarity using WordNet [34]. Wordnet is a hierarchical data structure
used to classify words and determine similarity between multiple words. Words are classified
into synsets. A synset is a set of synonymous words. A synset can, itself, contain multiple
synsets. This forms a hierarchy with more general words at the top of the hierarchy, and more
specific words lower in the hierarchy. For example “music” would likely be below “sound” in
the Wordnet hierarchy, as “music” refers to a particular subset of “sounds.” Similarity between
words is determined by the distance between each words location in WordNet. Additionally,
the depth of two synsets deepest common ancestor is directly proportional to the similarity of
two words. This is because terms deeper in Wordnet are more specific, while keywords higher
are more general.

LSS compares two sets of text, A and B in 2 basic steps. First, LSS pre-processes the text
items. A and B are stripped of all special characters and punctuation. Duplicate tokens within
A and B are also removed. During pre-processing, LSS uses Wordnet to identify the synsets
for each words between the two text items being compared.

Second, LSS constructs C, which is a concatenation of the terms in A and B. C is then
used to create similarity matrix C. Each item Ci,j is equal to the similarity between items
i and j, found using WordNet. Using A as an example, we create a weighted term vector A.
Each element Ai is set to the sum of all elements in A compared to Ci, using the similarity
matrix C. The same process is repeated for B to produce the weighted term vector B. The
similarity between A and B is then defined as the cosine similarity between vectors A and B.
The output will be between 0 and 1, with 1 being an identical match, and 0 being completely
semantically dissimilar. In practice, a similarity of 0 is rarely, if ever, found.

3.5. TextRank

TextRank is a graph-based model for text processing created by Mihalcea, et al [33]. TextRank
is an unsupervised method that can be used for either keyword or sentence extraction. In this
paper, we focus on TextRank’s sentence extraction tool. We used an implementation of the
TextRank algorithm created by David Adamo †. This implementation returns a 100-word
summary of the body of text selected from the highest rated sentences.

TextRank works in three basic steps. First, we extract all sentences from a block of text.
Each sentence becomes a vertex in a graph. The edges in the graph are then weighted by
the similarity. This results in a highly connected graph. A weight of 1.0 between two vertices
would mean two identical sentences. The larger the weight of the edge, the more similar the
sentences. Edge weight can be determined by any type of similarity metric. In this project, we
use the Levenshtein distance [20] to calculate the edge weights. This was selected over more
common approaches such as using cosine similarity due to a somewhat better performance in
internal preliminary experimentation. This experimentation was done using a selection of Java
projects we have used in software studies [29, 28]. These projects include NanoXML, Jedit,
and JHotDraw. The final step is to run PageRank to score each vertice. The vertices are then
sorted by their PageRank score, and the top scoring vertice sentences are used as the feature
list.

3.6. TLDR

TLDR‡ (Too Long Didn’t Read) is a plug-in extension available for various web browsers,
including the Google Chrome § web browser ¶. TLDR takes as input a webpage, such as

†https://github.com/davidadamojr
‡http://tldr.io/browser-extension
§http://chrome.google.com
¶As of 16 April 2015, the TLDR is no longer functional. TLDR’s website and support channels have all been
taken down. The app can still be downloaded, but does not function

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

https://github.com/davidadamojr
http://tldr.io/browser-extension
http://chrome.google.com

6

a news article. TLDR uses the PlexiNLP ‖ API, previously Stremor, as a natural language
processing tool to automatically generate summaries. TLDR automatically selects sentences
from a given web page to return as a summary. Users can customize how large they want the
summary to be. Users can choose to have a short summary containing just a few sentences, or
larger summaries that contain more of the source material, such as 25%, 50%, or 75% of the
original source material. In small summaries, TLDR attempts to isolate the most important
sentences from the article. For larger summaries, TLDR attempts to filter out extraneous
sentences that do not provide core understanding. TLDR often looks for repeated words, and
leverages document format in order to determine important words and phrases. In this study,
we use TLDR’s “summary” feature, which returns a summary anywhere from 3 to 7 sentences
long of the body of text.

4. APPROACH

This section details how we use the supporting technologies described in Section 3 to generate
the summaries and feature lists evaluated in our user study. An overview of our approach is
illustrated in Figure 1. This section first describes how we collect and preprocess documentation
from a Java project. Additionally, we describe the four summarization approaches used in
our user study. The two feature list tools, Overlap and LSS, that use LDA are described in
Section 4.2. The two textual analysis summarization tools are described in Section 4.3. Both
of these approaches, as well as TextRank and TLDR, require the source code to have Javadocs
comments. Programs that have very limited or no documentation cannot be effectively analyzed
using this approach.

4.1. Documentation Processing

In this section, we will describe how we extract and preprocess Java documentation in order
to create feature lists. For consistency, we use the same document extraction process for both
LDA-based approaches and textual analysis tools.

Our extraction process is illustrated in Figure 1. Initially, we extract all comments and
JavaDocs from the source code of a Java project. All special characters are removed from the
extracted text except for periods, question marks, and exclamation points. The exception is
made for these characters because they are sentence delimiters. The text is then split into
sentences using these delimiters. We do not always split on periods. If, for example, a period is
between two numbers with no whitespace, it is likely a version number delimiter. Additionally,
each method’s Javadocs are separated by linebreaks. This means if a particular Javadoc section
does not end with punctuation, as was often the case, we treat the end of that Javadoc as
the end of a sentence. In-line comments, which rarely have punctuation at the end to denote
the end of a sentence, have a period added. Additionally, if a Javadoc contains 2 or more
consecutive linebreaks, we treat those line breaks as the end of a sentence even if there is no
punctuation before the line breaks. We cannot treat individual line breaks in Javadocs as the
end of sentences, as linebreaks are often added to ensure the entirity of the documentation stays
“on screen.” After separating sentences, we processed the words in the sentences as follows.
First, we split all words on camelcasing. This means identifier names such as “loadFile” become
“load file.” Finally, we remove Javadocs keywords such as “@param.” This is done because
they do not add to the sentences semantic information when looked at from the project level
granularity.

This forms our list of sentences that are used by the LDA-based approaches and the textual
analysis tools to select sentences to include in the feature list. The list of sentences are also
used by LDA to create the topic model for the given Java project. Before the sentences are

‖http://www.plexinlp.com/index.html

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

http://www.plexinlp.com/index.html

7

Figure 1. This flowchart shows how we extract a feature list from source code documentation. First,
we extract sentences from the documenation. We then create topics from those sentences using LDA.
Finally, for each topic, we select a sentence using either Overlap or LSS to create a feature list. The

feature is made up of a list of sentences that are most similar to the topics generated by LDA.

used by LDA, we perform some additional text modification. First, we removed a list of stop
words. Stop Words are words that add little semantic information. We considered two types
of stop words. We removed English stop words such as “the”, “an”, etc. Next, we removed
Java stop words. These include common keywords in Java such as “return”, “if”, etc. These
words are removed from the sentences before running LDA to ensure we specifically focus on
keywords that would contain meaningful semantic information.

4.2. LDA-Based Approaches

This section will explain how we use LDA in our Overlap and LSS feature list generation tools.
We will explain how we configure and use LDA to create topic models from sentence lists. We
will then explain how we use these topics models to generated a feature list using Overlap and
LSS.

4.2.1. Configuring LDA For our approach, we used the parallel C++ implementation of LDA
(PLDA) created by Liu et al [22]. PLDA produces an output topic model of a specified number
of topics. We chose to produce 10 topics for all Java projects. While this number may be too
large for simpler projects, we found by inspection that it created a balance of coverage and
conciseness for most projects. Before we run PLDA, we remove several stop words, such as
“the”, “a”, “and”, et al. We then give the term frequencies of each Java class in a project to
PLDA as input. We set the values of the parameters α and β to .1 and .01 respectively. We
chose α to be small because we believed that each class (which were treated as documents)
would contain a small number of topics, and often only 1. We chose β to be very small because
we believed most keywords would only apply to at most one topic, due to the large size of
some projects’ documentation. Our topic model was created after 2500 iterations, of which
1500 were “burn-in” iterations. The output topic model is then used in our Overlap and LSS
approach to select sentences from the sentence list.

4.2.2. Overlap Using the list of sentences extracted from the documentation and the LDA
topic model, we create a feature list for a given Java project. We do this by finding the “best”
sentence for each topic in the LDA topic model. The “best” sentence is the sentence which
scores highest using the Overlap metric. The process by which we create a feature list using
Overlap is illustrated in Figure 2.

To calculate overlap between a topic and a sentence, we compare the ten most important
words in the given topic to the words in the sentence. First, we remove all the stop words
from the sentence that we remove from the LDA model. Then, we define the list of the top
ten topic keywords as A. Additionally, we define the list of words in the given sentence as B.
Using these defintions, overlap is calculated using the following formula:

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

8

Figure 2. This flowchart shows how we generate a feature list using a list of topics from the LDA topic
Model and the list of sentences. This process is typically repeated, for this study, 10 times, once for
each topic. The sentence selected for each topic is the one that scores highest with respect to the given

similarity metric, either Overlap or LSS.

Overlap(A,B) =
|A ∩B|
|A ∪B|

(1)

The more words that are shared by the topic and sentence, the more similar the topic and
the sentence are. Note that we do not use stemming in our selection of words. If not including
stemming results in a decreased performance, we would expect the LSS approach to outperform
Overlap. This is because words sharing a common root are usually in the same, or nearly the
same, synset in WordNet. For each topic in the LDA topic model, we select the sentence from
the sentence list that has the highest overlap score. Because our LDA topic model is typically
10 topics, this will produce 10 sentences. These 10 sentences are used as the feature list.

4.2.3. LSS The process of selecting sentences using LSS to form a feature list is nearly the
same as Overlap. We use the same LDA topic model as Overlap for LSS, as well as the same
sentence list. The only difference is that, instead of using the Overlap metric to select the best
sentences, we use the LSS metric. This will produce a set of sentences with one sentence for
each topic. The selected sentence is the most semantically similar sentence to the topics. This
allows for sentences with words that are similar in meaning to the topic keywords, even when
the words are literally different, to be selected as the best sentence.

4.3. Textual Analysis Tools

Our textual analysis tools, TextRank and TLDR, take in the list of sentences and output a
summary, which we use as the feature list for the given Java project. Our textual analysis
tools do not make use of LDA. TextRank is described in Section 3.5, and TLDR is described
in Section3.6. We use an implementation of TextRank created by David Adamo.∗∗. TextRank
creates a summary of the sentence list. TLDR was run by opening each sentence list as a text
file in the Google Chrome web browser††. The TLDR plug-in generated a summary for the
page, which we use as the feature list.

5. EVALUATION

In this section, we outline our methodology for evaluating the four approaches for automatic
project summarization. We evaluate our two approaches that generate features lists, Overlap
and LSS, alongside our approaches for textual summarization, TextRank and TLDR. We define
our research questions and describe how we answer the research questions.

∗∗https://github.com/davidadamojr/TextRank
††Google Chrome Version 37.0.2062.103 m

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

https://github.com/davidadamojr/TextRank

9

5.1. Research Questions

In this paper, we conduct a user study to determine how the four project summarization tools
perform. We seek to answer the following research questions:

RQ1 Which automatic project summarization approach do programmers find to be the most
accurate, and to what degree?

RQ2 Which automatic project summarization approach do programmers find to be the most
content adequate, and to what degree?

RQ3 Which automatic project summarization approach do programmers find to be the most
concise, and to what degree?

RQ4 Which automatic project summarization approach do programmers find to be the most
readable, and to what degree?

RQ5 When asked to compare two automatic project summarization approaches directly, which
automatic project summarization approach do programmers prefer most?

The rational for RQ1, RQ2, and RQ3 is to find the quality of our project summary
approaches. Accuracy, content adequacy, and conciseness are metrics that have been used
to measure quality in previous automatic summarization studies [45, 29]. A summary that is
accurate will not provide a programmer with false information about a project. A summary
that is content adequate includes all or most of the important features within a project.
A summary that is concise does not contain trivial information that is unnecessary to
understanding the project. The rationale for RQ4 is to determine how easily programmers
can read the output. Given that all four of the approaches rely on sentence selection, it is
important to know if combining sentences results in confusion. Possible sources of loss of
readability could be having disjointed sentences or pronoun disagreement. The rationale for
RQ5 is to see, when comparing two generated summaries directly, which approach’s summaries
programmers prefer.

5.2. Data Collection

Initially, we selected 50 Java projects a large repository of SourceForge∗ Java projects. These
projects represent a wide variety of purposes and include a text editor, a music player, and
an XML parsing tool, among many other purposes. Six of the projects selected were from
our previous work in automatic source code summarization [29]. The other 44 projects were
randomly selected from a repository of SourceForge Java projects. Selections were limited to
projects with raw source code available that also had a project website. This limitation was
added so, in our user study, programmers could quickly get an expert summary of what a
given project’s purpose is. Four of the 50 of the projects were removed from this list due to a
lack of source code documentation.

Of the remaining projects, another 10 were removed because they were too large for our
implementation of TextRank to summarize. Our TextRank implementation could generally
handle up 2̃ million characters from extracted sentences before having memory problems. This
mean TextRank could not be used on larger projects. Our other approaches could handle all
the projects, although LSS took several days to generate sentences for the largest processes due
to WordNet. By comparison, Overlap took several seconds to generate sentences for the same
projects. Another 4 projects were then removed because their entire source code documentation
was less than 20 unique sentences. This was seen as too small to be useful for generating
automatic summarizations from the documentation. In total, we summarized 32 projects using
all 4 approaches. These projects and their summaries are available in the online appendix (see
Section 5.6).

∗http://www.sourceforge.net

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

http://www.sourceforge.net

10

Figure 3. The is a screen capture of an evaluation question from the survey. In this question, the
participant is asked to evaluated a TextRank generated summary of the documentation for the JKiwi
project. The participant is asked to evaluate the summary by answering one essay question and 4

multiple choice questions.

5.3. User Survey

This section describes our user study survey. The remaining participant was an information
technologies professional employed by the University of Notre Dame. Participants were initially
vetted to ensure they had a computer science or programming background. The participants
took the survey online and were asked to work alone. Each participant was asked 5 evaluation
questions and 10 comparison questions, in that order. Both of these question types are
described below. The participants could skip a question at their own discretion. Reasons for
skipping a question could be not understanding a project well enough to rate a summary.
Additionally, participants could end the survey at any time. Surveys results where participants
took less than 2 minutes per question on average were discarded on the basis that the
participant may not have given due diligence to answer the questions honestly.

5.3.1. Evaluation Questions Each participant is first asked to answer 5 evaluation questions.
An example of an evaluation question is shown in Figure 3. Each evaluation question selects
a random project and one of the four automatically generated summaries or feature lists
generated for the project. The participant is given the name of the project, a version number,
the project website, a link to download the source code for that version of the project, and
a summary. Each participant is asked to, in their own words, state what they believe the
purpose of the project is. The participant is then asked four multiple choice questions. The
questions ask the participants if they agree that the given summary or feature list is accurate,
complete, concise, and readable. These question respectively correspond with RQ1, RQ2, RQ3

, and RQ4. The participant can choose between “Strongly Agree,” “Agree,” “Disagree,” and

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

11

Figure 4. The is a screen capture of a comparison question from the survey. In this question, the
participant is asked to choose which of two summaries the feel is better for describing the NanoXML
project. The participant is asked to evaluate the summary by answering a single multipe choice

question.

“Strongly Disagree.” After answering all the questions, the participant may move on to the
next question by clicking a button in the bottom right of the page.

5.3.2. Comparison Questions After the evaluation questions, each participant is asked 10
comparison questions. An example of a comparison question is shown in Figure 4. Each
comparison question randomly selects a project, then randomly selects 2 summaries or features
lists generated for the project. As in the evaluation questions, the participants are given the
name of the project, a version number, the project website, a link to download the source
code for that version of the project. Unlike in the evaluation question, participants are not
asked to summarize the project in their own words. This was done to avoid fatigue on the
part of the participant. The participants were simply asked to choose, via radio button, which
summary or feature list they felt was better. Additionally, the participants are given a third
option, “Both of these choices appear identical.” This option was included because, for some
projects, Overlap and LSS generated very similar summaries. After answering, participants
could advance to the next question by clicking a button in the bottom right of the page.

5.4. Participants

Our user study was conducted by 13 participants. Participants were compensated $30 USD for
their time spent evaluating our tool. Of the 13 participants, one survey response was thrown out
for incompleteness, leaving us with 12 participants. Eleven of these participants were graduate
students in the Department of Computer Science and Engineering at the University of Notre
Dame. The remaining participant was an information technology professional. We informed
participants when they were recruited that the participants should be comfortable reading
and understanding the Java programming language. However, out study did not require the
participants to read the Java source code, nor did it require them to complete any programming
task.

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

12

5.5. Statistical Test

In this study, we will use the Mann-Whitney statistical test [24] to answer our research
questions. Mann-Whitney is selected because we cannot guarantee our results will be normally
distributed. Additionally our results are unpaired due to the random nature of the question
selection. When performing statistical tests comparing four groups of responses, where each
set of data represents one of the four approaches, we use the following procedure: 1) We sort
each set of data by the mean of the score being tested. 2) The set of data with the best mean is
given rank 1. 3) The set of data with the next highest mean is compared to the first group using
Mann-Whitney. If there is no statistically significant difference, the second set of data is also
given rank 1. Otherwise, if there is a statistically significant difference, the second set of data is
given rank 2. For each remaining population, we compare to all samples in the highest current
rank. This means, for example, in the case where both of the first two populations are rank 1,
we compare the third set of data to both the first and the second using Mann-Whitney. Thus,
it is possible that all four sets of data will have the rank 1, meaning no statistically significant
difference exists between all four sets of data.

5.6. Reproducibility

For reproducibility, we have posted the list of projects we used in this study to an online
appendix †. We have additionally included our anonymized survey data in the appendix.

5.7. Threats to Validity

As with all software engineering studies, a source of threat to validity are the projects selected
for study. We cannot guarantee that a similar study that used different projects will produce the
same results. We mitigate this threat by studying 32 projects with a wide variety of purposes.
We avoid the threat of author selection bias by randomly selecting the projects. As a result
of the large number of projects we consider, however, we can expect documentation quality
to vary. Some projects we consider are poorly documented. This decision was intentional, to
account for a possible weaknesses of each approach. However, this threat should be mitigated
by the fact that we use all four approaches for each project. Poor documentation, specifically
a lack of sufficient Javadocs, that would hurt one approach would almost certainly hurt the
other approaches as well, as all approaches relied on leveraging Javadocs to generated sentence
lists.

Additionally, our set of participants could be a source of threat to validity. As stated in
Section 5.4, we sought participants from a variety of backgrounds to mitigate this threat.
However, we cannot guarantee a similar study conducted with different participants would
produce the same results. Nearly all of our study participants were graduate students, with
one professional programmer. We felt comfortable that these participants would be capable of
understanding the high-level concepts of each project. Because we only had one professional
programmer, we cannot meaningfully differentiate between the behavior of student participants
and professional participants.

The approaches in our study can produce different numbers of sentences. While LSS and
Overlap typically produce 10 sentences, this is not always the case in TextRank and TLDR.
This can threaten the validity of our completeness and conciseness results. We chose not
to mitigate this threat by setting a fixed number of sentences to generate. This was because
reducing the number of topics with LSS and Overlap would significantly decrease the usefulness
of the LDA model generated. We chose not to expand TextRank, as it usually led to repeating
the same sentences that were in the smaller summary. This would mean TextRank would
significantly decrease in conciseness without improving in completeness. TLDR did not allow
us to modify the size.

†http://www.nd.edu/~pmcburne/features/

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

http://www.nd.edu/~pmcburne/features/

13

Table I. Average scores by approach

Approach Accuracy Completeness Conciseness Readability
Overlap 1.93 1.80 2.00 2.47

LSS 1.94 1.69 1.69 2.00
TextRank 1.62 1.62 1.87 1.81

TLDR 1.92 1.92 1.85 2.23
Overall 1.85 1.75 1.85 2.12

Another source of threat to validity comes from only studying Java projects that have an
associated website. These websites provide an explanation of the source code authors’ intended
purposes for the project. This could bias a participant where they rate one automatically
generated summary higher based on that summary being more similar to the summary
provided by the authors. This choice was made so that study participants could quickly see
what a given Java project they are unfamiliar with. We believe this condition was necessary,
as asking the participants to understand a project by reading documentation and studying the
source code would have resulted in a large amount of fatigue, forcing our study to limit itself
to a very small number of questions per participant. This also would have likely meant less
understanding of the projects by the participants, resulting in less useful results.

A threat to validity unique to TextRank and TLDR summaries comes from the formatting
of the documentation. TextRank and TLDR both can leverage the format of their input text.
Specifically, TextRank and TLDR consider paragraph breaks. As we described in Section
4.3, we add paragraph breaks after each method summary in our documentation parsing.
This is done because we consider each method summary to be it’s own encapsulated piece
of information. We cannot guarantee that a different formatting decision would result in the
same results. However, we believe based upon preliminary analysis that this difference, if any,
would be limited.

6. RESULTS

In this section, we present the results of our user study. We answer the five research questions
defined in Section . The average scores for the Evaluation Questions on each approach on
each metric can be seen in Table I. These averages are taken from the Evaluation Questions
of our survey. We quantified the user answers of “Strongly Agree”, “Agree”, ”Disagree”, and
“Strongly Disagree” as 4, 3, 2, and 1 respectively. In this way, larger numbers represent better
averages. Overall is the average of all 4 approaches collectively.

6.1. RQ1 Accuracy

Our study found that there was no statistically significant difference between any of the four
approaches with respect to accuracy. Our study found that on average participants disagreed
that the generated feature lists accurately depicted the given Java project, regardless of
the approach. However, TextRank did perform a fair amount worse than the other three
approaches.

LSS performed the best on accuracy, with an average of 3.06. Overlap and TLDR performed
very similarly, with averages of 3.07 and 3.08 respectively. TextRank scored somewhat worse,
with an average accuracy score of 3.38, which is near the borderline between “Disagree” and
“Strongly Disagree.” For TextRank, participants “Strongly Disagreed” that the given feature
list was accurate in a majority of cases. According to our statistical tests in Table II, none
of the approaches are significantly better or worse than the others. Thus, while TextRank
does have a notably worse mean than the other approaches, it does not meet the threshold of
significance.

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

14

T
a
b
le

II
.
M

a
n
n
-W

h
it

n
ey

T
es

ts
fo

r
st

a
ti

st
ic

a
l

si
g
n
ifi

ca
n
ce

.
U

,
U
e
x
p
t
,

a
n
d
U
v
a
r
i

a
re

M
a
n
n
-W

h
it

n
ey

d
er

iv
ed

va
lu

es
u
se

to
ca

lc
u
la

te
th

e
d
ec

is
io

n
va

lu
e

p
.

If
p

¡
.0

5
,

th
e

tw
o

p
o
p
u
la

ti
o
n
s

a
re

st
a
ti

st
ic

a
ll
y

d
is

ti
n
ct

,
a
n
d

th
e

ra
n
k

o
f

th
e

p
o
p
u
la

ti
o
n

w
it

h
th

e
lo

w
er

m
ea

n
is

in
cr

em
en

te
d
.

R
Q

H
A

p
p

ro
ac

h
n

m
ea

n
S

td
.

d
ev

.
U

U
e
x
p
t

U
v
a
r
i

p
D

ec
is

io
n

R
a
n

k

R
Q

1

H
1

L
S

S
1
6

1
.9

4
0
.9

2
9

1
0
8
.5

1
1
2

5
0
6

0
.8

9
4

N
o
t

R
ej

ec
t

1
O

ve
rl

ap
1
4

1
.9

3
0
.7

3
1

H
2

L
S

S
+

O
ve

rl
a
p

3
0

1
.9

3
0
.8

2
8

1
8
9

1
9
5

1
2
5
6

0
.8

7
7

N
o
t

R
ej

ec
t

N
/
A

T
L

D
R

1
3

1
.9

2
0
.9

5
4

1

H
3

L
S

S
+

O
ve

rl
ap

+
T

L
D

R
4
3

1
.9

3
0
.8

5
6

2
7
1

3
4
4

3
0
1
6

0
.1

8
7

N
o
t

R
ej

ec
t

N
/
A

T
ex

tR
an

k
1
6

1
.6

2
0
.8

8
5

1

R
Q

2

H
4

T
L

D
R

1
3

1
.9

2
0
.9

5
4

9
6

9
7
.5

3
8
3

0
.9

5
9

N
o
t

R
ej

ec
t

1
O

ve
rl

ap
1
5

1
.8

0
0
.5

6
1

1

H
5

O
ve

rl
ap

+
T

L
D

R
2
8

1
.8

6
0
.7

5
6

1
7
8

2
2
4

1
4
0
7

0
.2

2
5

N
o
t

R
ej

ec
t

N
/
A

L
S

S
1
6

1
.6

9
1
.0

1
1

H
6

O
ve

rl
ap

+
T

L
D

R
+

L
S

S
4
4

1
.7

9
0
.8

5
1

2
9
5
.5

3
5
2

3
0
1
1

0
.3

0
7

N
o
t

R
ej

ec
t

N
/
A

T
ex

tR
an

k
1
6

1
.6

2
0
.9

5
7

1

R
Q

3

H
7

O
ve

rl
ap

1
5

2
.0

0
0
.7

5
6

1
0
5
.5

1
2
0

5
6
7

0
.5

5
6

N
o
t

R
ej

ec
t

1
T

ex
tR

an
k

1
6

1
.8

7
1
.0

9
1

]

H
8

O
ve

rl
ap

+
T

ex
tR

an
k

3
1

1
.9

3
0
.9

2
9

1
8
5

2
0
2

1
3
3
8

0
.6

6
2

N
o
t

R
ej

ec
t

N
/
A

T
L

D
R

1
3

1
.8

5
1
.0

7
1

H
9

O
ve

rl
ap

+
T

ex
tR

an
k
+

T
L

D
R

4
4

1
.9

1
0
.9

6
3
1
8

3
5
2

3
1
3
3

0
.5

5
N

o
t

R
ej

ec
t

N
/
A

L
S

S
1
6

1
.6

9
0
.7

0
4

1

R
Q

4

H
1
0

O
ve

rl
ap

1
5

1
.4

7
0
.6

4
8
1

9
7
.5

4
1
9

0
.4

3
4

N
o
t

R
ej

ec
t

1
T

L
D

R
1
3

2
.2

3
1
.0

9
1

H
1
1

O
ve

rl
ap

+
T

L
D

R
2
8

2
.3

6
0
.8

7
1
7
1

2
2
4

1
5
1
0

0
.1

7
7

N
o
t

R
ej

ec
t

N
/
A

L
S

S
1
6

2
.0

0
0
.8

9
4

1

H
1
2

O
ve

rl
ap

+
T

L
D

R
+

L
S

S
4
4

2
.2

3
0
.8

8
6

2
5
3

3
5
2

3
2
6
3

0
.0

8
6

N
o
t

R
ej

ec
t

N
/
A

T
ex

tR
an

k
1
6

1
.8

1
1
.1

1
1

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

15

When looking at all four approaches as a whole, none of the approaches performed
particularly well. Across all four approaches, participants only “Strongly Agreed” that the
given feature list was accurate 2 times: once for LSS, and once for TLDR. In 42.4% of cases,
the participants “Strongly Disagreed” the given feature list was accurate. Possible reasons for
the overall poor performance are discussed in section 7.

6.2. RQ2 Completeness

Our study found that there was no statistically significant difference between any of the four
approaches with respect to content adequacy, or “completeness.” We found that participants
“Disagreed” or “Strongly Disagreed” that the given feature list was complete in a large majority
of cases. Discussion as to why these approaches lack completeness can be found in Section 7.

TLDR had the best average at 3.08, which is slightly worse than “Disagree.” However, in
TLDR, participants “Agreed” or “Strongly agreed” the feature list was complete in 23.1% of
cases. Overlap had the second best average at 3.20. However, no participant “Strongly Agreed”
that an Overlap feature list was complete. LSS and TextRank had average scores of 3.31 and
3.38 respectively. According to our statistical tests in Table II. We found no statistically
significant differences across all four approaches.

Once again, all four approaches on average rate worse than “Disagree.” Overall, participants
only “Strongly Agree” or “Agreed” the feature list was complete 15% of the time across all
approaches. The plurality of responses, 46.7%, “Strongly Disagree” that the feature lists were
complete. This, along with the individual results, implies that these automatic approaches do
not provide a good coverage of sentences that explain the diverse uses of the projects. This
discussion is expanded on in the next section.

6.3. RQ3 Conciseness

Our study found that there was no statistically significant difference between any of the four
approaches with respect to conciseness. Overlap performed the best with respect to conciseness
with an average of exactly 3.0. This means that for the best approach, users on average still
“Disagreed” that the automatically generated feature lists were concise.

As stated, Overlap created what are participants perceived as the most concise feature lists
on average. TextRank and TLDR had average scores of 3.13 and 3.15 respectively. However,
participants “Strongly Disagreed” with a majority, 56.3% of TextRank generated feature
lists they were presented with. LSS performed the worse with conciseness with an average
of 3.31. In LSS, participants “Disagreed” or “Strongly Disagree” that the presented feature
list was concise 87.5% of the time. According to our statistical tests in Table II, there was no
statistically significant difference between the approaches.

6.4. RQ4 Readability

Our study found that there was no statistically significant difference between any of the four
approaches, although TextRank is a borderline case. Overlap provided the most readable
feature lists on average, while TextRank provided the least readable feature lists.

On the whole, participants found overlap feature lists were the most readable, with an
average score of 2.53. In a majority of cases, 53.5% participants “Agreed” that the features
lists were readable. However, no participants “Strongly Agreed” that any Overlap feature lists
were readable. TLDR averaged the second best readability, although a majority of time, 61.5%
participants said they “Disagreed” or “Strongly Disagreed”. LSS had an average readability
score of 3.0 exactly, meaning on average participants “Disagreed” that the feature lists
generated by LSS were readable. TextRank had the least readable feature lists. Participants
“Strongly Disagreed” a majority of the time, 56.3%, that TextRank summaries were readable.
According to our statistical test, there was no statistical difference between any of the
approaches. However, TextRank, with a p-value of .086, was only just above the .05 threshold
of significance.

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

16

Table III. This table shows the breakdown of wins and losses when two items are compared.

Breakdown of Wins and Losses

Winner
Loser

Overlap LSS TextRank TLDR
Overlap - 7 4 15

LSS 1 - 7 10
TextRank 2 8 - 3

TLDR 3 4 4 -

Table IV. Normalized win, loss, and tie percentages for each approach.

Approach
Percentages

Win Loss Tie
Overlap 47.3% 10.9% 41.8%

LSS 46.7% 31.7% 21.7%
TextRank 24.1% 27.8% 48.1%

TLDR 16.9% 43.1% 40.0%

6.5. RQ5 Comparison

Despite the mixed results of RQ1 through RQ4, when asked to compare directly, participants
favor feature lists generated by LDA-based approaches Overlap and LSS to textual
summarization-based approaches TextRank and TLDR. When asked to compare two feature
lists directly, Overlap was selected as the better choice more often than any other approach.
Additionally, Overlap lost the least, where losing is defined as the other approach’s feature list
being selected as the better of the two. By contrast, TLDR won the least and lost the most.

Table III shows the breakdown of wins and losses for comparisons of approaches. For
example, in Table III where the winner is Overlap and the loser is LSS, we have the number
7. This means there were 7 instances where, when the participant was given a feature list
generated by Overlap and a feature list generated by LSS, the participant chose the Overlap
feature list 7 times. Participants only selected the LSS summary over the Overlap summary 1
time. For space, ties are not illustrated in this table. In this table, Overlap wins against every
other approach more than it loses. TLDR appears to perform the worst, losing very frequently
to Overlap and LSS. However, TLDR still wins against TextRank more often than it loses.

The winning, losing, and tieing percentages for the comparison question are shown in Table
IV. Here we can see that Overlap has the largest winning percentage and the smallest losing
percentage of all approaches. LSS has the second highest winning percentage, but also the
second highest losing percentage. The very low tie percentage for LSS implies that participants
either found the LSS feature list effective, or very poor. Possible reasons for this are discussed
in Section 7. TextRank and TLDR had much lower winning percentages than Overlap and
LSS. TLDR also has the highest losing percentage by over 10%. These tests suggest that
the LDA-based approaches tend to beat the textual summarization-based approaches when
compared directly.

7. DISCUSSION

.
This section discusses the impact of the results of our study. We additionally discuss the

wider impact of our study in the field of feature discovery.
Our results for RQ1, RQ2, and RQ3 show that, in general, study participants found all

automatically generated summarization tools to perform to a level not meeting sufficient

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

17

quality. Participants, on average, disagreed on all four of the sentence selection tools for
automatic feature list generation across accuracy, completeness, and conciseness.

Overall, our findings suggest that sentence selection techniques are as yet insufficient for
feature discovery. This is a key finding because sentence selection is currently in use in software
engineering research tools [32] – our study suggests that additional innovation is needed for
these tools to enter industrial use. However, sentence selection has been effective for other
forms of text such as news articles. It is interesting to note that while our evaluation question
results showed no statistical difference between the four approaches, our comparison question
results suggest that participants clearly favored features lists created by LDA-models over
textual analysis models. A reason for this difference could be that software documentation
is generally made up of disjoint method and class summaries. Rather than a cohesive order
of events like a news story, each piece of documentation is much more independent. While
LDA focuses on overarching topics, the textual analysis tools are trying to determine each
sentences importance by leveraging structure and order. However, software documentation is
not strictly dependent on order, since Java methods can be in any order in the source code.
Further, the structure of software documentation is very different than the structure of a
news article. We believe future work might benefit from trying to find more general sentences
in software documentation that discuss method interactions. Focusing on highly interactive
methods proved beneficial in prior automatic summarization work [29].

Overlap, LSS, and TLDR all had very close reliability averages. TextRank was not
statistically worse, though did have the worst average. Of these approaches, Overlap always had
the fastest run-time. Overlap simply uses set operations, which have very low time complexity.
TLDR requires communication with a server, though rarely takes more than a few minutes on
large projects. On large projects we examined, such as jQuantlib∗, running LSS and TextRank
could take a full day. These long run-times were mostly due to these approaches needing
to interact with WordNet. Interactions included search and path-finding, which on a large
network of words can be time-consuming. TextRank and LSS were the largest limiting factor
in projects we could select because of their long run-times and large memory requirements.
However, even with all the added semantic understanding that using WordNet can allow, LSS
and TextRank do not outperform Overlap in terms of feature list quality. On the evaluation
questions, Overlap did not perform significantly better or worse than either TextRank for
LSS. In the comparison questions, Overlap had a larger win percentage and smaller loss
percentage than both TextRank and TLDR. This suggests that, given the current state of
sentence selection, it may be better to use simpler metrics like Overlap for large projects.

The automated approaches, in general, performed better with respect to readability than
other areas. This is likely because all these approaches select sentences from a pool of sentences
written by human experts. While the other metrics rely on these sentences working together
to communicate a larger goal, a feature list can still be readable even if the sentences don’t
interact with each other. Readability appears to result from the grammatical correctness of
the sentences being selected rather than their overall cohesiveness.

A common problem with the LSS approach was that at times LSS would select very large
sentences. Because of how LSS compares two bodies of text, large sentences often get artificially
inflated, as a large number of words means at least one word is more likely to be semantically
similar. We encountered this in previous work [30]. When this did occur, Conciseness scores and
Accuracy scores were usually lower. Often, this resulted in run-on sentences in documentation
being inflated over short sentences that were also related to the topic.

Some of the projects we investigated were poorly documented. Some projects have more
unique files than they have unique sentences in Javadocs. Our results, investigated on a project
by project basis, appear to suggest that projects that have a very small number of unique
sentences in the Javadocs perform poorly across all 4 approaches. However, this only affects a
small number of the projects we studied. The difficulty is that comment quality is not always

∗http://www.jquantlib.org/en/latest/

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

http://www.jquantlib.org/en/latest/

18

related to the number of unique sentences. While clearly having very little documentation is
problematic, that does not mean large projects consistently perform better. Conciseness is
an important component of documentation quality [46, 45, 29], thus more sentences to choose
from is not better if those sentences are not meaningful to the high-level purpose of the project.
Noteworthy examples of sentences that do not serve a high-level purpose including authorship
statements, licensing agreements, and GUI-related information. Future approaches could seek
to remove these sentences from the base of considered sentences as a pre-processing step. The
large projects in our approach were often noisy. Some of these large projects performed just as
poorly as the projects with more Java classes than unique sentences. This suggests that having
a diverse pool of sentences to choose from may be necessary, but it is certainly not sufficient
to our approach working well.

The goal of our approaches to feature discovery is to acquaint programmers unfamiliar with
a given Java project with the purpose of that project. However, Completeness can be difficult
for inexperienced users to judge. This is because a programmer unfamiliar with a given system
will likely early learn enough about a system to understand its general purpose in order to
respond to our survey. Completeness, however, is about a given feature list noting every task
a system can complete or be used to complete. In order to properly evaluate completeness,
future studies will likely require the assistance of the developers of the project being evaluated.

8. FOLLOW-UP EVALUATION

We conducted a brief follow-up study in an attempt to improve our Overlap approach. In this
section we discuss the method of evaluation for our follow-up study. Our follow-up study has
the following goals 1) To perform a focused study on well-documented projects to prevent our
results from being affected by poor-documentation. 2) To see if Overlap’s performance can
be improved by using LDA-GA to determine near-optimal input parameters for LDA. 3) To
examine how effectively individual sentences convey high-level understanding of a project’s
purpose. Specifically, we ask the following research questions:

RQ6 To what degree do sentences, selected from a well-documented Java Project using
Overlap, provide understanding of the purpose of the project?

RQ7 To what degree are individual sentences, selected from a well-documented Java Project
using Overlap, relevant to the overall purpose of the project?

8.1. Data Collection

In this section, we describe how we collected and prepared data for our follow-up study. In this
study, we focus on extracting sentences from documentation of three projects: jEdit †, a text
editting tool designed for programmers, Jajuk ‡, a music and audio file organization tool and
player, and jHotDraw §, a 2D graphics framework. We included information describing the size
of these projects in Table V. We selected these projects because we have previously used them
in automatic source code summarization research [29], and we have found these projects to
be particularly well documented. Additionally, these tools have an easily understood purpose.
Nearly all computer programmers will have used some kind of similar program in the past.
We extracted sentences from these projects in the same fashion that we extracted sentences
for the first study, as described in Section 4.1.

†http://sourceforge.net/projects/jedit/
‡http://sourceforge.net/projects/jajuk/?source=directory
§http://sourceforge.net/projects/jhotdraw/?source=directory

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

http://sourceforge.net/projects/jedit/
http://sourceforge.net/projects/jajuk/?source=directory
http://sourceforge.net/projects/jhotdraw/?source=directory

19

Table V. The three Java projects used in our evaluation. KLOC reported with all comments removed.
All projects are open-source.

Methods KLOC Java Files

Jajuk 5921 70 544
JEdit 7161 117 555

JHotdraw 5263 31 466

LDA Input Parameters
Min Gibbs Iterations: 10
Max Gibbs Iterations: 100
Min Alpha: 0.1
Max Alpha: 1
Min Beta: 0.1
Max Beta: 1
Minimum Topics: 5
Maximum Topics: 20

Genetic Algorithm Parameters
Max Iterations: 100
Run: 5
Permutation Rate: 0.1
Population: 30
Elitism: 0.05
Seed: 5

Figure 5. This lists the input parameters for LDA-GA used in our study.

Table VI. This table lists the near-optimal input parameters suggested by LDA-GA.

Project α β #Topics #Iterations

jEdit 0.5906 0.5108 20 48
Jajuk 0.3315 0.7145 20 55
jHotDraw 0.8102 0.7785 20 53

8.2. Configuring LDA-GA

In this section, we discuss how we configured LDA-GA to select topics from the source code and
documentation. Dr. Panichella both furnished an implementation of LDA-GA and provided
assistance in configuring it for our study. For each of our three projects, we gave LDA-GA
the source code for each project and the extracted sentences. LDA-GA then calculated near-
optimal parameters for us to use in LDA. Using these parameters as specified by LDA-GA,
we generate a topic model for the project with LDA. For reproducibility, we have included
the input parameters for LDA-GA in Figure 5. These parameters were decided with assistance
from Dr. Panichella, the author of the system. For the purpose of feature discovery, we limited
ourselves to 20 topics maximum, as we believed if we had more topics than this, our feature list
would be too long and would result in both very low-level topics and a fatigue effect in study
participants. Table VI lists the input configurations suggested by LDA-GA for each project.

8.3. Selecting Sentences

In this section, we describe our procedure for selecting sentences to form our feature list from
the documentation for our follow up study. We used Overlap (Section 4.2.2) to find the best

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

20

Table VII. Questions asked about the feature list in the first section of the follow-up study. Q1,
Q2, and Q3 were multiple choice. Participants could respond with “Strongly Disagree”, “Somewhat
Disagree”, “Somewhat Agree”, or “Strongly Agree”. Q4 was a required open ended question. Q5

allowed participants to provide any additional comments, and was optional.

Q1 I understand how the list of documentation items fits into
the program’s stated purpose on its website.

Q2 I believe that if given this list of documentation items, I
could predict the program’s intended purpose.

Q3 The list of documentation contains unnecessary items that
distract from the program’s intended purpose.

Q4 If there were no website, and you only had the list of
documentation items, what would you assume the purpose
of the program was? Please be detailed.

Q5 (Optional) Please note any additional comments here.

sentences for the top 10 keywords. We chose to use the top 10 keywords based on internal
experimentation. Often if we used fewer keywords, sentences were often too vague, or only
contained 1 keyword from the topic. More keywords resulted in noisy and repetitious keywords
in topics. We also looked at threshold approaches, where we considered all keywords in a topic
that scored above some n-value. However, often this resulted in some topics with only 1 or
sometimes zero topics, while other topics has 15 or more keywords larger than the threshold.
Because of the output of LDA-GA, all projects generated 20 sentences for their feature list.
After generating our list of features, we removed any duplicate sentences from the resulting
list. This affected only jHotDraw, which was reduced to 16 unique sentences. Jajuk and Jedit
had 20 unique sentences. We chose to remove duplicate sentences without replacing them, as
we wanted each topic to be affiliated only with its most similar sentence.

8.4. User Study

In order to evaluate the quality of our feature list sentences, we conducted a brief follow-up
user study. Many of the participants from our first study, as well as some new participants, we
asked to score our feature lists. The study was broken into three sections.

In the first section, programmers were presented with the sentences selected from jEdit.
Participants were asked the questions in Table VII. In our follow-up, we specifically want to
know if the given list of documentation items gives the programmers an idea of what the
system’s overall purpose is. We crafted these questions to determine this.

In the second and third section, we asked participants to evaluate features lists of Jajuk and
jHotDraw, respectively. However, rather than rate the feature lists as a whole, we asked readers
to rate each individual sentence in terms of relevance to the intended task. Programmers could
rate a sentence as “Very Relevant”, “Somewhat Relevant”, “Somewhat Irrelevant” and ”Very
Irrelevant.” The programmers were only asked to rate each sentence based on relevance, as
completeness for one sentence would be meaningless to ask, and conciseness would be hard to
judge in some cases. We asked participants to rate each sentence as we had concerns in our
initial study that fatigue would cause participants to only read the first few sentences rather
than the entire feature list. By examining each feature individually, we ensure the participants
have to consider each sentence rather than giving in to fatigue and only skimming a larger
list. This was important, as we also we asked participants Q4 and Q5 from Table VII. If we
did not ensure all participants read each sentence in the summary, the results of Q4 would be
unreliable.

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

21

8.5. Participants

Our study had a total of 12 participants. All 12 participants were graduate students in
the Computer Science and Engineering Department at the University of Notre Dame. The
participants were recruited via in-department e-mail communications. Students were offered
$10 to participate in the study. Five of the twelve participants also participated in our initial
study. The remaining seven did not take the initial study. Participants were informed that an
understanding of basic programming and Java conventions was required. One participant only
completed the first section of the study of the study. The remaining participants completed
the entire study.

8.6. Reproducibility

For reproducibility, we have included anonymized study results as well as the feature lists
generated for each project in an online appendix ¶.

8.7. Threats to Validity

As with any software engineering study, the participants in our study are a potential threat
to validity. Given that this study was fully graduate students with a computer programming
background, we believe they were qualified and that their responses deserve merit. We believe
that this is especially true given that there was no programming task required, and that
the task was overall relatively simple. Still, we cannot guarantee that a different group of
professional programmers would research the same conclusions.

The selection of projects we study is another source of threat to validity. The projects we
selected in this follow-up study were selected because they were well documented. We selected
high-quality documented projects because we wanted to mitigate the threat that our results
were being “brought down” by projects that were poorly documented. These projects have
previously been used in source code summarization studies [29]. However, this also means we
acknowledge that our approach often fails when dealing with poorly documented code. Our
approach cannot work on completely undocumented code.

Another threat to validity comes from the fixed ordering of projects in our approach. We
chose to fix the order of our approach in order to maximize feedback on specific projects. Our
initial study was broad to the point that patterns found in individual projects with regards to
the efficacy of techniques were lost in the larger study. To counter this, our follow-up study
focuses on depth by collecting a more data on few projects. The fixed order ensured that the
same questions were answered about each project, giving us the most possible information to
work with in regards to depth. That said, the fixed order could introduce biases that limit the
generalizability our results.

Additionally, there is a significant threat to validity of bias related to Q4. Specifically,
programmers are asked to view the website before answering Q4, which can result is significant
bias in their answers. We have the programmer view the website, specifically in section two
and three, to rate each extracted sentence. Because there were a 20 and 16 sentences to rate in
Jajuk and jHotDraw, respectively, we were concerned that without requiring participants to
answer a question on each sentence, participants would only read the first few sentences before
assuming purpose. We are concerned that this was the case in our initial study. This would be
problematic, as the order of the sentences is an arbitrary result of the generated topics.

9. FOLLOW-UP STUDY RESULTS

In this section, we present the results of our follow-up user study. The implications of these
results will be discussed in Section 10.

¶http://www.nd.edu/~pmcburne/features/

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

http://www.nd.edu/~pmcburne/features/

22

Table VIII. Section 1 responses to multiple choice questions.

Strongly Somewhat Somewhat Strongly
Question Disagree Disagree Agree Agree

Q1 1 3 8 0
Q2 1 4 7 0
Q3 1 3 3 5

9.1. Section 1 Results

Section 1 of our survey is used to address RQ6. In Section 1 of our survey, participants were
given a feature list for jEdit constructed using topics generated by LDA-GA. These topics
were used to select sentences using our Overlap sentence selection approach. The majority
of participants, 8 of 12, “Somewhat Agreed” that they understood how the list of sentences
from documentation fit into the program’s stated purpose, however, none “Strongly Agreed”.
One participant “Strongly Disagreed”. This participant, in Q4 stated that the documentation
list was difficult to understand, and if they had to guess, they “would assume that this
program creates a dockable window user interface that contains a toolbar.” Seven of the 12
participants “Somewhat Agreed” that they could predict the program’s intended purpose from
the documentation.

However, on Q3, 8 of the 12 participants either “Somewhat Agreed” or “Strongly Agreeed”
that the list of documentation contained unnecessary items that distract from the program’s
intended purpose. Because we had 20 topics generated for jEdit, this could be the result of
selecting sentences for topics that do not communicate high-enough level ideas. These sentences
could distract or confuse from the project’s intended purpose. In the case of jEdit, several of
the output sentences referred to things attributed to GUI elements, which many participants
noted in Q4 is not something they would intuitively expect in a text editor. Overall, we answer
RQ6 by noting that we did improve over our wider survey. However, conciseness in particular
is still a significant concern.

9.2. Section 2 and 3 Results

Table IX. Aggregate responses to multiple choice questions for Section 2 and 3. In each Section,
participants were asked to rate the relevance of each sentence generated by LDA-GA topics using

Overlap sentence selection.

Very Somewhat Somewhat Very
Project Irrelevant Irrelevant Relevant Relevant

Jajuk 75 44 67 34
jHotDraw 29 46 57 43

In the remaining two sections of our study, participants were asked to rate the relevance
of sentences selected from documentation. For Jajuk, the results indicate that many of the
sentences participants believed the sentence to be “Very Irrelevant.” Across all sentences,
this was the most common answer. Of the 20 sentences, 12 received more “Very Irrelevant”
or “Somewhat irrelevant” scores from participants than “Somewhat Relevant” or “Very
Relevant”. Of the remain 8 sentences, which received more “Relevant” ratings, only 2
received more “Very Relevant” scores than “Somewhat Relevant.” However, despite the lower
performance, when asked what the participants would assume the purpose of the program
was if they only had to go off the features list, 7 of the 11 participants mentioned said
they would consider the program a music or media player of some form. These participants
specifically mentioned that sentences containing words such as “album”, “artist”, and “track”
indicate this functionality. Additionally, one of the sentences, extracted from a test program
within the software, makes reference to the band “Red Hot Chili Peppers.” Of the remaining

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

23

4 participants, 2 said they would think the list described some user interface tool. Another
participant said they believed this was a data wizard used to construct a screen. The remaining
participant said they would not be able to figure out any intent based on the list.

The quantitative results for jHotDraw were better. It should be noted for jHotDraw there
were 4 duplicate sentences that were removed, and as such each participant only rated 16
sentences. In this case, the majority of ratings by participants for jHotDraw were either
“Somewhat” or “Very Relevant”. Ten of the 16 sentences received more “Relevant” ratings
than “Irrelevant”. Of the 10 sentences rated “Somewhat” or “Very Relevant”, 3 were rated
more frequently as “ Very Relevant”. Of the 11 participants, 10 said that if given the feature
list, they would believe this project would be a drawing tool of some kind, albeit one of the
participants said “but still with very low confidence, because almost all GUI applications have
something for drawing and some visual views.” It is worth mentioning that the title jHotDraw
includes the word draw in it, which could influence how our participants answered Q4. The
remaining participant said the program would be a GUI editing or designing tool. In these
sections, we answer RQ6 with cautious optimism that our approach can provide some high-
level understanding. However, in RQ7 we find that there are still a large number of irrelevant
sentences being included in our summaries.

10. FOLLOW-UP STUDY DISCUSSION

In this section, we discuss the findings of our follow-up user study. Overall, we believe the
results of this follow-up study show that there is some promise to automatic feature discovery
via sentence selection. While our initial study had, overall, poor results, our follow-up study
shows that sentence selection can work for the purpose of generally informing a programmer
what the purpose of a given project is on well documented projects.

A common point of confusion among study participants was that the features often referred
to GUI elements. Many participants said these documentation items often led them to believe
a program allowed you design or edit GUIs. In future work, it may be worth exploring reducing
the number of topics that refer to graphic and interface elements.

It should be noted that for every project, LDA-GA suggested 20 topics. This was our
maximum allowable number of topics based on our LDA-GA parameters. We set 20 as the
maximum out of concern that the summaries would become too large for an effective human
study, as well as the topics would become too specific and low level to clearly indicate a
projects overall purpose. When we removed the upper-bound of 20 topics, all three projects
were generating in excess of 60 topics. As we discussed in the prior paragraph, it’s likely that
GUI topics could be better combined to reduce their confusion impact on the summary output
without affecting the overall message. This would reduce the number of topics more naturally
then setting a fixed upper-bound number of topics.

We do not believe any of the automatic approaches presented in this paper would outperform
human experts at this time. A concern is that while feature discovery may perform better on
well-documented projects, it is reasonable to believe that if a project is well documented, it
likely has a website that lists the features written by a human expert. However, from our own
experience, we have found projects with expired websites and no clear means to contact the
developers. If the project were additionally poorly documented, our approach as is would not
perform adequately. We believe that future work could focus on combining automatic natural
language documentation and summarization approaches, such as Sridhara et al. [45] or our
own previous work, McBurney et al. [28] with automatic feature discovery, which could allow
for poorly-documented projects or projects lacking any documentation to generate a feature
list.

While this work lays a foundation for project summarization using feature discovery by
source code analysis, future work could extract sentences from other sources beyond source
code and embedded JavaDocs. These other sources of documentation could include change
logs, developer communications, bug reports, etc. These sources have been used to summarize

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

24

individual sections of source code [39, 51], and we believe sentences extracted from these
sources could be used to describe features of an entire project. While it is beyond the scope
of this foundational work, future work will want to mine these sources when available.

11. RELATED WORK

This section will cover related work in automatic source code summarization. This paper
is related to source code summarization in that we are attempting to provide overall
understanding of a software project. Source code summarization is a growing field in the
literature. Several of these approaches rely on information retrieval (IR) techniques. Haiduc
et al. presented an approach to summarizing source code methods using a Vector Space
Model [17]. This approach summarized individual source code methods by providing keywords
that describe the method, similar to how LDA produces topics in the form of keywords in
feature discovery [12, 21]. This work was later modified by Rodeghero et al. where keyword
selection was weighted base on source code context [40]. In this approach different source
code contexts were considered more important due to the results of an eye-tracking study.
This paper demonstrated that programmers preferred when keywords were selected when
considerations for source code context were made. These approaches focus on individual
method summarization. Our goal is to summarize projects at a higher level.

More recently, two source code summarization approaches use natural language
summarization. Sridhara et al. create an approach that summarize Java methods by identifying
important statements in a given method using IR techniques [44]. These statements are then
translated into natural language using templates to create natural language summaries of the
method [45]. Our later work expanded on the idea of natural language summaries by creating
natural language summaries of Java methods using a method’s contextual information [29].
Contextual information was derived using a call graph where methods with higher PageRank
scores were considered more important to describing other methods. This work differs from
this current work in that both of these approaches describe only individual methods. These
approaches currently do not allow for project-wide summarization. Additionally, Panichella et
al. used developer communications, including bug reports and mailings lists, for Lucene and
Eclipse to automatically generate descriptions of methods [39]. Wong et al. mine comments
from StackOverflow and other programming Q&A sites to generate source code summaries [51].
Related to this, Zhang et al mine discussions on API libraries to identify problematic features
to bring them to the attention of the developers [52]. In the future, developer discussions may
be used to supplement documentation in our open feature extraction approaches. This would
be particularly useful when documentation is lacking or limited in the source code itself.

Another approach to source code summarization is topic-modeling. As discussed in Section
3.1, LDA is a commonly used tool in software topic modeling [12, 21]. De Lucia et al.
demonstrated that techniques such as LDA produce artifact labelling similar to human
programmer labeling [10]. Panichella et al. presented LDA-GA, a genetic algorithm searching
tool to derive a near optimal LDA configuration for modeling a given software project [38].
Baldi et al. adapted latent topics for Aspect-Oriented Programming [2]. In our own recent work,
we represented Java projects as a tree-like hierarchy of topic, where more general concepts
would be higher in the tree, and less general topics would be lower in the tree [28]. By presenting
methods in a hierarchy with associated topics, programmers felt they understood better how
the given method fit into the overall project. This work, alongside the growing source code
summarization field, lead us to believe that project-wide natural language summarization is
possible with further work in the field.

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

25

12. CONCLUSION

In this paper, we explored four automatic feature list generation tools for Java projects.
Each of these tools selected sentences from existing documentation to form a feature list.
Our evaluation found that there is still much work to be done in this area, as these
preliminary techniques did not perform well in our evaluation. While LDA can find topics
that help programmers understand projects better [12, 21], it is not always possible to
describe these topics as natural language sentences extracted from JavaDocs. Existing work
has shown that it is possible to produce quality automatic summarizations of Java methods.
The problem of reliably automatically summarizing projects with natural language remains
unsolved, especially for projects that are poorly documented. However, our evaluation lays the
groundwork for future work in the area of automatic source code summarization and presents
four baseline techniques to compare to. Additionally, we show that there is some promise that
automatically generated natural language feature lists can give programmers a general idea of
what the purpose of a given software project is.

ACKNOWLEDGMENT

The authors would like to thank the participants in our evaluation for their careful efforts.
Additionally, the authors would like to thank Dr. Annibale Panichella for both furnishing an
implementation of LDA-GA and providing assistance in configuring it’s parameters.

REFERENCES

1. H. U. Asuncion, A. U. Asuncion, and R. N. Taylor, “Software traceability with topic modeling,”
in Proceedings of the 32Nd ACM/IEEE International Conference on Software Engineering -
Volume 1, ser. ICSE ’10. New York, NY, USA: ACM, 2010, pp. 95–104. [Online]. Available:
http://doi.acm.org/10.1145/1806799.1806817

2. P. F. Baldi, C. V. Lopes, E. J. Linstead, and S. K. Bajracharya, “A theory of aspects as
latent topics,” SIGPLAN Not., vol. 43, no. 10, pp. 543–562, Oct. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1449955.1449807

3. K. Beck, Test-driven development: by example. Addison-Wesley Professional, 2003.
4. D. Binkley, D. Heinz, D. Lawrie, and J. Overfelt, “Understanding lda in source code analysis,” in

Proceedings of the 22Nd International Conference on Program Comprehension, ser. ICPC 2014. New
York, NY, USA: ACM, 2014, pp. 26–36. [Online]. Available: http://doi.acm.org/10.1145/2597008.2597150

5. D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” J. Mach. Learn. Res., vol. 3, pp.
993–1022, Mar. 2003. [Online]. Available: http://dl.acm.org/citation.cfm?id=944919.944937

6. A. Classen, P. Heymans, and P.-Y. Schobbens, “Whats in a feature: A requirements engineering
perspective,” in Fundamental Approaches to Software Engineering. Springer, 2008, pp. 16–30.

7. J. Cleland-Huang, A. Czauderna, M. Gibiec, and J. Emenecker, “A machine learning approach for tracing
regulatory codes to product specific requirements,” in Proceedings of the 32Nd ACM/IEEE International
Conference on Software Engineering - Volume 1, ser. ICSE ’10. New York, NY, USA: ACM, 2010, pp.
155–164. [Online]. Available: http://doi.acm.org/10.1145/1806799.1806825

8. M. V. Couto, M. T. Valente, and E. Figueiredo, “Extracting software product lines: A case study using
conditional compilation,” in Software Maintenance and Reengineering (CSMR), 2011 15th European
Conference on. IEEE, 2011, pp. 191–200.

9. D. Croft, S. Coupland, J. Shell, and S. Brown, “A fast and efficient semantic short text similarity metric,”
in Computational Intelligence (UKCI), 2013 13th UK Workshop on, Sept 2013, pp. 221–227.

10. A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella, and S. Panichella, “Using ir methods for
labeling source code artifacts: Is it worthwhile?” in Program Comprehension (ICPC), 2012 IEEE 20th
International Conference on, June 2012, pp. 193–202.

11. S. C. B. de Souza, N. Anquetil, and K. M. de Oliveira, “A study of the documentation essential
to software maintenance,” in Proceedings of the 23rd annual international conference on Design of
communication: documenting & designing for pervasive information, ser. SIGDOC ’05. New York, NY,
USA: ACM, 2005, pp. 68–75. [Online]. Available: http://doi.acm.org/10.1145/1085313.1085331

12. B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature location in source code: a taxonomy and
survey,” Journal of Software: Evolution and Process, vol. 25, no. 1, pp. 53–95, 2013.

13. H. Dumitru, M. Gibiec, N. Hariri, J. Cleland-Huang, B. Mobasher, C. Castro-Herrera, and M. Mirakhorli,
“On-demand feature recommendations derived from mining public product descriptions,” in Software
Engineering (ICSE), 2011 33rd International Conference on, May 2011, pp. 181–190.

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

http://doi.acm.org/10.1145/1806799.1806817
http://doi.acm.org/10.1145/1449955.1449807
http://doi.acm.org/10.1145/2597008.2597150
http://dl.acm.org/citation.cfm?id=944919.944937
http://doi.acm.org/10.1145/1806799.1806825
http://doi.acm.org/10.1145/1085313.1085331

26

14. B. Fluri, M. Wursch, and H. C. Gall, “Do code and comments co-evolve? on the relation between source
code and comment changes,” in Proceedings of the 14th Working Conference on Reverse Engineering,
ser. WCRE ’07. Washington, DC, USA: IEEE Computer Society, 2007, pp. 70–79. [Online]. Available:
http://dx.doi.org/10.1109/WCRE.2007.21

15. J. A. Goguen and C. Linde, “Techniques for requirements elicitation,” Requirements Engineering, vol. 93,
pp. 152–164, 1993.

16. S. Grant, J. R. Cordy, and D. B. Skillicorn, “Using heuristics to estimate an appropriate number of
latent topics in source code analysis,” Science of Computer Programming, vol. 78, no. 9, pp. 1663 – 1678,
2013. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0167642313000762

17. S. Haiduc, J. Aponte, L. Moreno, and A. Marcus, “On the use of automated text summarization techniques
for summarizing source code,” in Reverse Engineering (WCRE), 2010 17th Working Conference on, Oct
2010, pp. 35–44.

18. M. Kajko-Mattsson, “A survey of documentation practice within corrective maintenance,”
Empirical Softw. Engg., vol. 10, no. 1, pp. 31–55, Jan. 2005. [Online]. Available:
http://dx.doi.org/10.1023/B:LIDA.0000048322.42751.ca

19. K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson, “Feature-oriented domain analysis
(foda) feasibility study,” DTIC Document, Tech. Rep., 1990.

20. V. Levenshtein, “Binary Codes Capable of Correcting Deletions, Insertions and Reversals,” Soviet Physics
Doklady, vol. 10, p. 707, 1966.

21. E. Linstead, P. Rigor, S. Bajracharya, C. Lopes, and P. Baldi, “Mining concepts from code with
probabilistic topic models,” in Proceedings of the Twenty-second IEEE/ACM International Conference
on Automated Software Engineering, ser. ASE ’07. New York, NY, USA: ACM, 2007, pp. 461–464.
[Online]. Available: http://doi.acm.org/10.1145/1321631.1321709

22. Z. Liu, Y. Zhang, E. Y. Chang, and M. Sun, “Plda+: Parallel latent dirichlet allocation with data placement
and pipeline processing,” ACM Transactions on Intelligent Systems and Technology, special issue on Large
Scale Machine Learning, 2011, software available at http://code.google.com/p/plda.

23. S. Lukins, N. Kraft, and L. Etzkorn, “Source code retrieval for bug localization using latent dirichlet
allocation,” in Reverse Engineering, 2008. WCRE ’08. 15th Working Conference on, Oct 2008, pp. 155–
164.

24. H. Mann and D. Whitney, “On a test of whether one of two random variables is stochastically larger than
the other,” The Annals of Mathematical Statistics, pp. 50–60, 1947.

25. A. Marcus and J. I. Maletic, “Recovering documentation-to-source-code traceability links using latent
semantic indexing,” in Proceedings of the 25th International Conference on Software Engineering, ser.
ICSE ’03. Washington, DC, USA: IEEE Computer Society, 2003, pp. 125–135. [Online]. Available:
http://dl.acm.org/citation.cfm?id=776816.776832

26. A. Marcus, J. I. Maletic, and A. Sergeyev, “Recovery of traceability links between software documentation
and source code,” International Journal of Software Engineering and Knowledge Engineering, vol. 15,
no. 05, pp. 811–836, 2005.

27. G. Maskeri, S. Sarkar, and K. Heafield, “Mining business topics in source code using latent dirichlet
allocation,” in Proceedings of the 1st India Software Engineering Conference, ser. ISEC ’08. New York,
NY, USA: ACM, 2008, pp. 113–120. [Online]. Available: http://doi.acm.org/10.1145/1342211.1342234

28. P. W. McBurney, C. Liu, C. McMillan, and T. Weninger, “Improving topic model source
code summarization,” in Proceedings of the 22Nd International Conference on Program
Comprehension, ser. ICPC 2014. New York, NY, USA: ACM, 2014, pp. 291–294. [Online].
Available: http://doi.acm.org/10.1145/2597008.2597793

29. P. W. McBurney and C. McMillan, “Automatic documentation generation via source code
summarization of method context,” in Proceedings of the 22Nd International Conference on Program
Comprehension, ser. ICPC 2014. New York, NY, USA: ACM, 2014, pp. 279–290. [Online]. Available:
http://doi.acm.org/10.1145/2597008.2597149

30. P. McBurney and C. McMillan, “An empirical study of the textual similarity between source code
and source code summaries,” Empirical Software Engineering, pp. 1–26, 2014. [Online]. Available:
http://dx.doi.org/10.1007/s10664-014-9344-6

31. C. McMillan, N. Hariri, D. Poshyvanyk, J. Cleland-Huang, and B. Mobasher, “Recommending source code
for use in rapid software prototypes,” in Software Engineering (ICSE), 2012 34th International Conference
on, June 2012, pp. 848–858.

32. ——, “Recommending source code for use in rapid software prototypes,” in Proceedings of the 2012
International Conference on Software Engineering. IEEE Press, 2012, pp. 848–858.

33. R. Mihalcea and P. Tarau, “Textrank: Bringing order into text,” in Proceedings of the 2004 Conference
on Empirical Methods in Natural Language Processing , EMNLP 2004, A meeting of SIGDAT, a Special
Interest Group of the ACL, held in conjunction with ACL 2004, 25-26 July 2004, Barcelona, Spain, 2004,
pp. 404–411. [Online]. Available: http://www.aclweb.org/anthology/W04-3252

34. G. A. Miller, “Wordnet: A lexical database for english,” COMMUNICATIONS OF THE ACM, vol. 38,
pp. 39–41, 1995.

35. L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pollock, and K. Vijay-Shanker, “Automatic generation
of natural language summaries for java classes,” in Program Comprehension (ICPC), 2013 IEEE 21st
International Conference on, May 2013, pp. 23–32.

36. L. Moreno, A. Marcus, L. Pollock, and K. Vijay-Shanker, “Jsummarizer: An automatic generator of natural
language summaries for java classes,” in Program Comprehension (ICPC), 2013 IEEE 21st International
Conference on, May 2013, pp. 230–232.

37. R. Oliveto, M. Gethers, D. Poshyvanyk, and A. De Lucia, “On the equivalence of information retrieval
methods for automated traceability link recovery,” in Program Comprehension (ICPC), 2010 IEEE 18th

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

http://dx.doi.org/10.1109/WCRE.2007.21
http://www.sciencedirect.com/science/article/pii/S0167642313000762
http://dx.doi.org/10.1023/B:LIDA.0000048322.42751.ca
http://doi.acm.org/10.1145/1321631.1321709
http://code.google.com/p/plda
http://dl.acm.org/citation.cfm?id=776816.776832
http://doi.acm.org/10.1145/1342211.1342234
http://doi.acm.org/10.1145/2597008.2597793
http://doi.acm.org/10.1145/2597008.2597149
http://dx.doi.org/10.1007/s10664-014-9344-6
http://www.aclweb.org/anthology/W04-3252

27

International Conference on, June 2010, pp. 68–71.
38. A. Panichella, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, and A. De Lucia, “How to effectively use

topic models for software engineering tasks? an approach based on genetic algorithms,” in Proceedings of
the 2013 International Conference on Software Engineering, ser. ICSE ’13. Piscataway, NJ, USA: IEEE
Press, 2013, pp. 522–531. [Online]. Available: http://dl.acm.org/citation.cfm?id=2486788.2486857

39. S. Panichella, J. Aponte, M. Di Penta, A. Marcus, and G. Canfora, “Mining source code descriptions
from developer communications,” in Program Comprehension (ICPC), 2012 IEEE 20th International
Conference on, June 2012, pp. 63–72.

40. P. Rodeghero, C. McMillan, P. W. McBurney, N. Bosch, and S. D’Mello, “Improving automated source
code summarization via an eye-tracking study of programmers,” in Proceedings of the 36th International
Conference on Software Engineering, ser. ICSE 2014. New York, NY, USA: ACM, 2014, pp. 390–401.
[Online]. Available: http://doi.acm.org/10.1145/2568225.2568247

41. T. Roehm, R. Tiarks, R. Koschke, and W. Maalej, “How do professional developers comprehend
software?” in Proceedings of the 34th International Conference on Software Engineering,
ser. ICSE ’12. Piscataway, NJ, USA: IEEE Press, 2012, pp. 255–265. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2337223.2337254

42. J. Sillito, G. C. Murphy, and K. De Volder, “Asking and answering questions during a programming
change task,” IEEE Trans. Softw. Eng., vol. 34, no. 4, pp. 434–451, Jul. 2008. [Online]. Available:
http://dx.doi.org/10.1109/TSE.2008.26

43. G. Sridhara, L. Pollock, and K. Vijay-Shanker, “Automatically detecting and describing high level actions
within methods,” in Software Engineering (ICSE), 2011 33rd International Conference on, May 2011,
pp. 101–110.

44. G. Sridhara, “Automatic generation of descriptive summary comments for methods in object-oriented
programs,” Ph.D. dissertation, Newark, DE, USA, 2012, aAI3499878.

45. G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-Shanker, “Towards automatically generating
summary comments for java methods,” in Proceedings of the IEEE/ACM International Conference on
Automated Software Engineering, ser. ASE ’10. New York, NY, USA: ACM, 2010, pp. 43–52. [Online].
Available: http://doi.acm.org/10.1145/1858996.1859006

46. D. Steidl, B. Hummel, and E. Juergens, “Quality analysis of source code comments,” in Program
Comprehension (ICPC), 2013 IEEE 21st International Conference on, May 2013, pp. 83–92.

47. S. Thomas, “Mining software repositories using topic models,” in Software Engineering (ICSE), 2011 33rd
International Conference on, May 2011, pp. 1138–1139.

48. K. Tian, M. Revelle, and D. Poshyvanyk, “Using latent dirichlet allocation for automatic categorization of
software,” in Mining Software Repositories, 2009. MSR ’09. 6th IEEE International Working Conference
on, May 2009, pp. 163–166.

49. T. Wang, G. Yin, X. Li, and H. Wang, “Labeled topic detection of open source software from
mining mass textual project profiles,” in Proceedings of the First International Workshop on Software
Mining, ser. SoftwareMining ’12. New York, NY, USA: ACM, 2012, pp. 17–24. [Online]. Available:
http://doi.acm.org/10.1145/2384416.2384419

50. N. Wilde and M. C. Scully, “Software reconnaissance: mapping program features to code,” Journal of
Software Maintenance: Research and Practice, vol. 7, no. 1, pp. 49–62, 1995.

51. E. Wong, J. Yang, and L. Tan, “Autocomment: Mining question and answer sites for automatic comment
generation,” in Automated Software Engineering (ASE), 2013 IEEE/ACM 28th International Conference
on, Nov 2013, pp. 562–567.

52. Y. Zhang and D. Hou, “Extracting problematic api features from forum discussions,” in Program
Comprehension (ICPC), 2013 IEEE 21st International Conference on, May 2013, pp. 142–151.

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

http://dl.acm.org/citation.cfm?id=2486788.2486857
http://doi.acm.org/10.1145/2568225.2568247
http://dl.acm.org/citation.cfm?id=2337223.2337254
http://dx.doi.org/10.1109/TSE.2008.26
http://doi.acm.org/10.1145/1858996.1859006
http://doi.acm.org/10.1145/2384416.2384419

	Introduction
	The Problem
	Background
	Feature Discovery
	LDA
	LDA-GA
	LSS
	TextRank
	TLDR

	Approach
	Documentation Processing
	LDA-Based Approaches
	Configuring LDA
	Overlap
	LSS

	Textual Analysis Tools

	Evaluation
	Research Questions
	Data Collection
	User Survey
	Evaluation Questions
	Comparison Questions

	Participants
	Statistical Test
	Reproducibility
	Threats to Validity

	Results
	RQ1 Accuracy
	RQ2 Completeness
	RQ3 Conciseness
	RQ4 Readability
	RQ5 Comparison

	Discussion
	Follow-up Evaluation
	Data Collection
	Configuring LDA-GA
	Selecting Sentences
	User Study
	Participants
	Reproducibility
	Threats to Validity

	Follow-up Study Results
	Section 1 Results
	Section 2 and 3 Results

	Follow-up Study Discussion
	Related Work
	conclusion

