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Abstract—Eye movement patterns are the order in which
keywords or sections of keywords are read. These patterns are
an important component of how programmers read source code.
One strategy for determining how programmers perform sum-
marization tasks is through eye tracking studies. These studies
examine where people focus their attention while viewing text
or images. In this study, we expand on eye tracking analysis to
determine the eye movement patterns of programmers. We begin
the study with a qualitative exploration of the eye movement
patterns used by 10 professional programmers from an earlier
study. We then use what we learned qualitatively to perform a
quantitative analysis of those patterns. We found that all ten of
the programmers followed nearly identical eye movement pat-
terns. These patterns were analogous to eye movement patterns
of reading natural language.

I. INTRODUCTION

Eye movement patterns are the sequences or order of eye
movements that people use to read words [1]. These patterns
are usually researched with respect to natural language text.
Areas of patterns research involving natural language text
include ad placement in phone books [2], web site design [3],
newspaper layout [1], etc. Reading natural language prose is
different enough from reading programming languages that
eye movement patterns from natural language cannot neces-
sarily be applied to programming languages [4]. For example,
advertisements include pictures and have strict size limitations.
Programming languages, in contrast, typically do not have
pictures and do not have strong screen size restrictions.

Eye movement patterns are important for understanding
summarization task performance because they reveal the order
in which programmers look at different elements of code.
When reading code, programmers “skim” to avoid reading
every line of that code. A strong consensus has formed to
confirm that skimming occurs [5], though current literature
does not agree on what the programmers skip. Studies of
the eye movement patterns during summarization tasks are
needed to determine what the programmers skip. By providing
this knowledge, eye movement patterns would provide useful
guidance for improving algorithms and tools used to increase
summarization task efficiency, such as IDEs and automatic
summarization tools.

Unfortunately, current literature does not describe eye move-
ment patterns of programmers. A number of studies have
tracked the eye movements of programmers [6], [7], such as
a previous eye tracking study we conducted [8]. Our previous
work studies discreet locations of code such as method signa-
tures or control flow sections [8]. However, the patterns of eye
movement — the tendencies of movement from one section
to another — are still largely unknown. The novelty of this
work comes from the analysis and deeper understanding of
these patterns and their application. Without knowing these
patterns, tools meant to aid programmers in summarization
tasks could assume incorrect reading patterns such as those
used in natural language reading, which is not necessarily
the same as for source code. Tools with incorrect underly-
ing assumptions have the possibility of actually slowing or
preventing a programmer’s understanding of a program.

In this paper, we present a study to extract programmers’
reading patterns when applied to source code. Our contri-
bution is two-fold. We first explore, in a qualitative study,
the reading patterns from a previous eye-tracking study of
programmers reading Java methods [8]. The purpose of our
qualitative study is to provide a basis for designing a follow-
up quantitative study. In the quantitative study, we adapted a
procedure from Lohse and Peltz [2] to calculate eye movement
patterns from eye tracking data. We then analyzed these pat-
terns to determine which patterns are more common amongst
programmers reading source code. This analysis led us to
various observations about types of eye movement patterns
programmers tended to have. We found that these patterns we
observed tended to be consistent from method to method for
each programmer. We also found that the patterns tended to
be shared amongst the entire group of programmers.

II. THE PROBLEM

In this paper, we fill a gap in current program literature:
there are currently no studies on what order programmers
read source code for the purpose of summarization. The
order of reading is significant to understanding code because
it can help reveal which keywords programmers fixate on
during summarization tasks. It is currently unknown whether



programmers prefer to read code slowly, taking in each word
in order to have an in-depth understanding of the overall work.
On the other hand, a rapid scan may be enough to get a
decent understanding so that the programmer can move on
to the next task. Another unknown is whether programmers
like to read code in the order of the components in it or if
they prefer to start from the ends of lines and work their
way back. Discovering which of these reading patterns are
preferred by programmers can have a significant impact on
the overall understanding of summarization.

The importance of discovering the order in which code is
read can be extended beyond general summarization. In an
education setting, if the educator understands how computer
science students are reading source code when they are first
learning to understand both the specific code and code in
general, it is possible that they can better help the students with
comprehension [9]. This understanding also has the potential
to allow the teacher to better guide the students toward a better
path for comprehension if they are reading the code in a pattern
that does not fit the general pattern. Finally, if a specific pattern
is responsible for maximum comprehension, then educators
could also guide students to write code in a way that supports
summarization tasks [9].

It is known from related literature that comprehension can
be reduced when readers follow a reading pattern that they are
used to rather than a pattern better suited for the task [1], [2],
[3]. For example, in a study of people reading Yellow Page
advertisements, Lohse and Peltz [2] found that the position of
advertisements, independent of the quality of the business, had
a large impact on choice due to the natural scan from top to
bottom and overall reluctance to do exhaustive searching. This
means that readers’ instincts can have a significant impact on
scanning pages for information, even if they know it doesn’t
completely fulfill their original requirements. By finding the
pattern programmers follow when reading source code for the
first time, we can also find whether what they are used to
doing sometimes dictates some of the areas they look to for
information, useful or not, similarly to the Yellow Pages study.

III. BACKGROUND AND RELATED WORK

This section will cover background of eye movement pat-
terns research in general, as well as qualitative methods and
reading methods used in the past.

A. How Humans Read

There is comparatively far more literature available on how
humans read natural language, than on how we read source
code. Natural language text is plain text written similarly to
a reader’s native language [10]. If a reader’s native language
is English, then a book written in a similar style, such as En-
glish, French, Spanish, or German, can be considered natural
language text. In contrast, machine languages do not follow the
same structure as any human’s natural language. While natural
languages are written with sentences and paragraphs, machine
languages are written as statements and blocks. Natural lan-
guages allow for sentences to be written in various ways while

still retaining the same meaning, while machine languages
force a more precise approach when writing statements.

When humans read natural language text, there are generally
two ways it is accomplished: 1) slowly, using return sweeps
and thorough reading or 2) rapidly, using skimming and
scanning. A return sweep is the motion of the eyes moving
from the end of one line to the beginning of the next [11],
[12]. For it to be a true return sweep, the end of a line should
be on one end of a page, while the beginning of the next line is
on the opposite side. Thorough reading is moving from line to
line, making sure to read almost every word in every line [12].
These techniques help ensure that the reader has a complete
understanding of the text when reading is complete.

In contrast, skimming and scanning do not ensure a com-
plete understanding. Skimming is the act of rapidly reading a
section of text, attempting to get a summary of the informa-
tion [12], [13]. For example, by skimming the introduction of a
research paper, one can determine if they want to read the rest
of the paper. Scanning is the act of rapidly reading a section
of text, attempting to gain insight about a particular piece of
information [13]. For example, by scanning the surrounding
words around an unknown word in prose, a reader may be
able to use context clues to discern a sufficient meaning for
the unknown word. There are two types of scanning, where
the reader finds all instances of a particular repeated word or
set of words throughout the text or where someone finds a
particular word or set of words and studies the words around
them [13]. These techniques help ensure that the reader has
a only partial understanding of the text, in the hopes that
the partial understanding covers everything important, while
saving a reasonable amount of time.

In a few studies, findings have shown humans to read source
code different than natural language text [4], [7], [14]. These
studies found that programmers reading source code tended to
skip around the text looking for specific information and also
changed how they read the text depending on their needs or
the style of the source code. However, another study found that
some source code reading patterns maintain natural language
reading traits [15]. This study revealed a tendency to scan
through source code in a similar way as readers scan through
prose. In this paper, we intend to more directly determine
whether programmers’ eye movement patterns follow a natural
language pattern or not.

B. Eye Movement Patterns

Although there have been several studies of programmers’
eye movements, see Section 3.2.3, there are not many studies
on patterns of movement. There are also studies in other
areas that have conducted experiments for finding the reading
patterns of the general public, some of which used eye tracking
software to gain more accurate insights. The majority of
these studies involve consumers reading about products and/or
service. The Norman group1 recently published a technical

1The Norman group is a private training and research company that
specializes in user experiences and user interfaces [3].



report describing how people read web pages under various
conditions. There have been various reports published with this
premise in the past, but this newest issue includes eye tracking
evidence to support the claims made about people’s reading
patterns. This report is primarily intended as a guide for
helping web designers improve their site designs, providing in-
formation on people’s reading patterns while using computers
and/or the internet [3]. Other studies have conducted similar
experiments, but with physical mediums, such as newspapers
and Yellow Pages [1], [2]. These studies also used eye tracking
hardware to more accurately follow the eye movements of
the participants. These studies mainly focused on the average
consumer’s attention to companies’ ad placement strategies.

1) Yellow Pages Study: The quantitative analysis method
we use later in this paper is based on an earlier study of
eye movement patterns in advertising, specifically a technique
developed for analysing the Yellow Pages2. For purposes of
background and reproducibility, we describe that paper here.
Lohse and Peltz conducted an eye tracking study to see which
companies with comparable services would get chosen given
certain Yellow Page listings and advertisements [2]. Lohse
and Peltz define an eye movement pattern to be the “fixation
number sequence”, where a fixation is a temporary moment
of no eye movement lasting at least 100 milliseconds [2].
The experiment was run in 60 minute sections, with only
one participant per section. The participant sat in a room
with a researcher, but calibrated and used the eye tracker
themselves. The participant then read the instructions on what
to look for and how to switch between pages, if needed.
There was no extra special equipment, i.e. chin stabilizers,
neck braces, etc., used during the experiment apart from the
eye-tracking device [2]. The results from the study revealed
that the businesses that were lower on the list alphabetically
or had smaller ads were not chosen to complete the service
simply because the participants would finish their search
long before reaching these companies. After analyzing the
reading patterns, Lohse and Peltz found that people did have
a systematic way of looking for a business to use, which was
mainly using brute force by searching alphabetically or in
order from largest to smallest ads [2]. They also found that
some participants did not even fully read the company names
or advertisements as they scanned them — if they didn’t see
what they wanted right away, they quickly moved on [2].

2) Eye-Tracking in Program Comprehension: Various eye
tracking studies have been conducted in computer science [3],
[6], [7], [14], [15]. One early study was conducted by
Crosby et al.. This study determined that there is a difference
between reading source code and reading natural language
text [4]. Programmers tended to fixate on important keywords
and sections rather than thoroughly reading the full length of
text [4]. In two separate studies, Bednarik et al. found that
experienced programmers tended to fixate on function and

2The Yellow Pages is a telephone directory of businesses, usually published
annually, and distributed for free to all residences and businesses within a
given coverage area.

expressions outputs, while inexperienced programmers tended
to repetitively fixate on the same sections [7], [14]. Uwano et
al. found that programmers discovered bugs more easily when
they took more time to scan the source code before fixating
on a particular section [15]. Sharif et al. confirmed that scan
time and bug detection time are correlated [6].

3) Our Previous Eye-Tracking Study: We conducted a pre-
vious eye tracking study in which we examined what keywords
in source code programmers honed in on as they scanned a
method for comprehension. Keywords were also separated into
categories (signature, control flow, and invocation) in order to
determine if a specific section of the method was considered
more helpful for overall comprehension [8]. The methodology
of the study was to have the participants spend limited time
reading various methods and writing short, descriptive sum-
maries about each one. Specifically, we had each participant
sit in a room alone for 60 minutes. The participants themselves
were all professional programmers with a range from 6 to 27
years of experience. The methods they read were all written
in Java and were around 22 LOC each. The computer the
participants used had an eye-tracking system built into the
monitor that capture at 120 Hz. Each participant was required
to calibrate the eye-tracker before beginning the exercise. The
calibration helped the eye-tracker understand the participant’s
normal head and eye positioning. Then the participant was
given an example method that guided them through the process
needed to complete the exercise. There was no additional
equipment used or human interaction attempted during the
60 minute section [8]. The results of the study showed that
programmers tend to favor the signature over the body of the
method, and they tend to favor words not associated with the
control flow [8]. It is the eye-tracking data from this study that
we will use as input for finding source code reading patterns.

C. Program Comprehension
There are many studies on program comprehension. Holmes

et al. and Ko et al. have found that many of these studies focus
on the strategies and techniques used by programmers based
on the information they want [16], [17]. For example, some
programmers follow an “opportunistic” strategy aimed at find-
ing only the section of code that is needed during maintenance
tasks [18], [19], [20], [21]. In contrast, a “systemic” strategy
aims at understanding how different sections of source code
interact with each other [22], [23]. These strategies are useful
to understand, but they are specific to certain program com-
prehension tasks. Unfortunately, these studies have not looked
at the strategies programmers use when reading source code
in general. Mayer et al. speaks about some programmers fol-
lowing “bottom-up comprehension”, meaning that they prefer
to read source code to create mental abstractions to understand
the system [24]. However, they still do not give an explanation
of how programmers specifically read the source code in
order to accomplish this goal. The findings presented in this
paper aim to further explain this bottom-up comprehension,
especially since this form of comprehension can be directly
affected by programmers eye movement patterns.



Fig. 1: A sample java method after completing qualitative analysis. The circled keywords were ones fixated on for 300ms or
longer. The bold arrows represent a transition in focus from one keyword to another. (In this sample, there are approximately
25 of the beginning transitions.) This sample begins with a fixation on the append function call within the for-loop and ends
length function call just after the for-loop. There are two important aspects of this sample to notice that are shared amongst
many of the patterns. First, notice that many of the transitions are within two lines of the originating keyword (i.e., sectional
scanning). This is a common occurrence during the beginning of a method reading. Second, notice that many keywords on
the same line are fixated on, but that there are not many return sweeps. This is a sign that the programmer is skimming the
source code. Lastly, notice that there does not appear to be a regular pattern of the direction of reading.

IV. QUALITATIVE STUDY DESIGN

In this section, we describe our research questions, the
methodology of our qualitative study, and details of the
settings for the study.

A. Research Questions

The goal of this qualitative study is to obtain evidence of eye
movement patterns that can be tested later in the quantitative
study. Towards this goal, we propose four Research Questions
(RQ):

RQ1 Do programmers tend to read code from top to
bottom and from left to right, similar to English text?

RQ2 Do programmers tend to skim or thoroughly read the
code?

RQ3 Do programmers tend to jump sections rapidly or do
they finish a specific section before moving to the
next ones?

RQ4 Do programmers tend to read code similar to other
programmers?

The rationale for the first RQ is that a reasonable way
for programmers to read code might be the same way they
read natural language text. Answering RQ1 will contribute to
the debate on whether code comprehension is similar to text
comprehension. At present, different studies have come to dif-
ferent conclusions [4], [25]. The rationale behind RQ2 is that
evidence of programmers skimming through code has been

found before, and we want to see if this finding is corroborated
by the eye tracking data [5]. Whereas RQ2 tests skimming
over keywords, RQ3 tests whether programmers skim over
whole sections. The other option is that programmers could
prefer finding a main keyword, reading around it for context
clues, and then moving on to the next main keyword once
they fully understand the first. RQ4 is to see if the findings
from each individual programmer is similar enough to each
other to suggest that the eye movement patterns we found are
generalizable.

B. Methodology

Our methodology was to manually inspect the eye move-
ment patterns by drawing the patterns on paper. This strategy
enabled us to rapidly identify the patterns for the purposes
of this qualitative study. We use data from a previous eye-
tracking study (see Section III-B3). We hand-draw a circle
around the first word read of a method and then move to the
second word and circle that keyword. From there, we connect
the two keywords with a line and arrow, indicating the order
(see Figure 1 for an example). We continue doing this for every
word fixated on in each method. We repeated this process for 5
participants and 4 methods per participant. These participants
and methods were randomly selected from our original results
pool. After all of the methods are completed, the lines with
arrows are analyzed to distinguish any clear patterns.



C. Threats to Validity

Like all studies, this qualitative study has some threats
to validity. One threat is that methods were printed out on
standard printer paper in order to draw the connections. It is
possible that the small size of the paper coupled with the large
amount of keyword fixations throughout the eye-tracking study
could have caused some arrowed lines to cross in ways that
made them confusing. We cannot rule out the possibility that
some words may have been seen in a slightly different order
than originally recorded. However, this threat was minimized
due to the shear number of words, making a few mistakes
acceptable.

Another source of a threat is that a human researcher was
responsible for drawing the circles and lines. It is possible that
the researcher made some mistakes due to fatigue or stress.
We minimized this threat by requiring incremental sessions of
drawing and analysis to reduce a stress-causing workload.

V. QUALITATIVE STUDY RESULTS

In this section, we present our results to each research ques-
tion. We also present some examples for how we formulated
our answers and our rationale behind those answers.

A. RQ1: Source Code and Natural
Language Text Comparison

From our analysis, we found that the programmers read
source code similarly to their native language (in this case,
English). All programmers in our study tended to read code
from left to right, e.g., performed return sweeps. However, the
programmers did not always read from top to bottom. They
also read from bottom to top. Starting at the top or the bottom
appears to be a split preference of the programmer. Among
our participants, both of the preferences occurred with about
the same frequency.

Figure 2(a) and Figure 2(b) are examples of both source
code reading patterns described. The bold arrow lines in
Figure 2(a) show a small section of code reading that closely
resembles natural language text reading. The bold arrow lines
in Figure 2(b) show a small section of code reading that is
similar to natural language text reading, except that it runs
from bottom to top.

Our rationale is that programmers tend to read from left to
right because the majority of context clues in source code are
relatively further to the left. Even if the important keywords
are all on the right side of the method, they may not provide
enough information on their own. For example, consider an
important keyword in Figure 2(a) is getGenres. On line 4,
getGenres is passed as a parameter to setSelection, which is
being invoked by dialog. Just seeing that getGenres is being
passed as a parameter is not enough to understand its purpose.
Discovering why setSelection needs getGenres and why dialog
would call setSelection is necessary for understanding the
importance of getGenres.

Another possibility is that programmers use the pattern of
top to bottom reading and the alternative pattern of bottom to
top reading with the same intentions, but for different reasons.

(a) An example of reading from left-to-right and top-to-bottom.

(b) An example of reading from left-to-right and bottom-to-top.

Fig. 2: Examples of the two reading styles seen in the
qualitative exploration. The exploration found programmers to
be almost evenly split between these two styles, with a slight
tendency towards the top-to-bottom approach. It is important
to note that these are simplified versions of these two styles.
The exploration revealed that these styles are often mixed
within a single method reading. Also, the return sweeps shown
here are mostly single line movements, while a return sweep
can include multiple skipped lines.

The intention of both patterns is to help make the overall
purpose of the method more clear, more quickly. Reading
from top to bottom ensures that one of the first areas read
is the method signature, which contains the method name, the
return type, and the input parameters. All of this information
within the signature provides a significant amount of clues
for determining the overall purpose. However, the end of the
method also tends to provide significant clues to the overall
purpose. As can be seen in Figure 2(b), it is sometimes
possible for the end of a method to provide more important
information than the signature.



B. RQ2: Reading Technique:
Skimming versus Thorough

During our analysis, we discovered that programmers tend
to skim source code as opposed to thoroughly reading through
it. As we mapped the sequence of keyword views, we kept
track of how quickly the programmers moved from word to
word. If the participant maintained focus on a particular word
for over 1000ms, we considered them to be inspecting it. It
was common for some keywords to cause programmers to hold
their focus from 1000ms to upwards of 6000ms. However, it
was much more common for programmers to leave and return
to these important keywords several times during their reading
process, rather than hold their gaze on any particular keyword
for an extended period of time.

Our interpretation is that programmers skim through code
instead of read through it because of time pressures. Reading
is certainly a more thorough way of both determining the
purpose of this keyword and ensuring that a particular keyword
is important to the method. However, skimming may help
prevent reading of unnecessary words, with the condition that
some keywords may need to be revisited multiple times to
determine their purpose and level of importance.

C. RQ3: Scanning Technique:
Disorderly versus Sectionally

From our analysis, we found that programmers prefer to
jump among important keywords (e.g., to scan disorderly),
rather than thoroughly inspect the sections surrounding the
keywords (e.g., to scan sectionally). However, a significant
portion of the participants began scanning some of their
methods using the sectional technique before eventually using
the disorderly technique. The sectional technique tended to
only last until the programmer had scanned the entire method
with this technique exactly one time.

Figure 3(a) and Figure 3(b) are examples of both of these
techniques. The bold arrow lines in Figure 3(a) show a
disorderly scan through the method. The bold arrow lines in
Figure 3(b) show a sectional scan through a method.

We believe the reason that programmers prefer to jump
among important keywords is similar to the reason that they
prefer to skim code. Reading entire sections at a time may
lead to a better overall understanding, but may also waste
time through the processing of unimportant words just used for
connecting important keywords together. Programmers using
the sectional technique during the first pass of a method may
likely be a way of gauging the importance of specific keywords
to increase the efficiency of the disorderly technique. In a
sense, the first sectional scan gives some order to the disorderly
technique.

D. RQ4: Similarities:
Programmer by Programmer

We compared the visible patterns of each programmer and
determined that the patterns were similar, but not entirely the
same. As stated for RQ1, the preferences in reading direction
appeared to be split almost in half. As also seen for both RQ2

(a) An example of scanning disorderly.

(b) An example of scanning sectionally.

Fig. 3: Examples of the two scanning techniques. The qual-
itative exploration found that most programmers prefer the
disorderly approach. However, some programmers used the
sectional approach near the beginning of a method reading.
The exploration also found that, although uncommon, a few
programmers read a couple of methods using mostly sectional
scanning.

and RQ3, most of the programmers tended to use the faster
technique. However, one programmer did tend to read more
thoroughly and hold his gaze for longer on certain keywords
for all of his methods, and a separate programmer tended to
read in a more sectional manner than his fellow participants.

Although our analysis shows that a single eye movement
pattern may not fit all programmers, we interpret these findings
as a good reason for investigating these patterns further. These
findings show that, although all programmers may not have the
exact same code reading patterns, there may be a significant
amount of them with comparable patterns. We also believe
that since this qualitative analysis was done on a subset of
methods, further study is warranted.



E. Summary of Qualitative Results

We derive three main interpretations from our qualitative
analysis results. The first interpretation is that programmers
read through source code roughly the same way they read
through natural language text. They perform return sweeps,
just as they would with text. However, the difference is
that programmers have the liberty of starting at the top
or the bottom depending on which they believe will work
best for overall comprehension. Since the end of a method
can sometimes contain more important information than the
method signature, it is entirely possible that different methods
may be better understood using one pattern over the other.
The second interpretation is that programmers prefer to be
thorough as little as possible. For both the reading and
scanning techniques, the less thorough of the techniques was
preferable. The thorough techniques are more time-consuming,
but also more definitive. The third major interpretation is
that the eye movement patterns of programmers are similar
compared to one another, meaning that our findings here are
more likely to be generalizable. Our qualitative conclusion
is that programmers’ main reading pattern is skimming and
jumping from left to right starting at either the top or the
bottom, depending on preference and method.

VI. QUANTITATIVE STUDY DESIGN

In this section, we describe our research questions, the
methodology of our quantitative study, and details of the
settings for the study.

A. Research Questions

The goal of this quantitative study is to further explore the
questions proposed in the qualitative study. Towards this goal,
we have proposed four Research Questions (RQ):

RQ5 To what degree do programmers prefer to read source
code similar to English text?

RQ6 To what degree do programmers prefer to skim
source code?

RQ7 To what degree do programmers prefer to jump
between sections in source code rapidly?

RQ8 To what degree are programmers’ reading patterns
similar to other programmers’ reading patterns?

The rationale behind RQ5, RQ6, RQ7, and RQ8 is based
on what we found in the qualitative section. We found that
programmers do not prefer one reading technique completely
over another. These partial preferences require us to determine
the extent of each preference. Specifically, for RQ5, we
need to determine if programmers’ patterns are split between
reading code like English text or reading it the opposite. Even
if the split is not even, as was seen in the qualitative study,
the split may show RQ5 to be insignificant for determining
eye movement patterns. For RQ6, we need to determine if
programmers do prefer to skim through keywords. For RQ7,
we need to determine if programmers also prefer skimming
through sections of code as they seem to through keywords.
The findings of the qualitative study suggest that programmers
tend to skim most of the time in both cases. Finding the answer
to RQ8 is especially important. In the qualitative study, we saw

that the majority of reading patterns agreed, but some people
appeared to read the code differently for specific methods. This
appearance of separate reading patterns for some programmers
means that the similarities between eye movement patterns
may not be statistically significant. If this is the case, then
programmer eye movement patterns may not be as helpful
for understanding summarization task completion. Since the
qualitative study was run on a subset of the overall data, there
is the possibility that the patterns seen were coincidental.

B. Methodology

The methodology of our study is to extract the order of
eye fixations of different programmers, and then compute
the similarity of those orders of fixations. We adapted the
technique advocated by Lohse and Peltz [2] in their study
of eye fixation patterns in advertising (see Section III-B1).
Specifically, for each research question, we:

1) For RQ5, created a mapping to represent paths such as
”left to right” and ”bottom to top” as values. Using this
mapping, we can determine the overall percentage that
programmers use a natural language text reading pattern.

2) For RQ6, directly used the time values during and
between keyword gazes. With these time values, we can
determine the percentage that programmers stay focused
on certain keywords and slowly read through them.

3) For RQ7, created a mapping to represent paths such as
”section 1 to section 3” and ”section 5 to section 2” as
values. Using this mapping, we can determine the overall
percentage that programmers tend to stay in each section
as long as possible versus constantly switching between
sections.

4) For RQ8, used a combination of the values we created
for RQ5 through RQ7 for each individual’s methods to
create overall pattern values.

As Lohse and Peltz [2] point out, this procedure combines
individual programmer eye movements to inform us about
patterns of eye movement in general.

C. Statistical Tests

We compared direction, skimming, and transfer patterns
using the Wilcoxon signed-rank test [26]. This test is non
parametric and paired, and does not assume a normal dis-
tribution. It is suitable for our study because we compare
patterns paired for each method and because our data may not
be normally distributed. We determine similarities in patterns
between individuals by using one-way ANOVA. It is suitable
for our study because all methods used were similar in size
and type, but are not necessarily the same.

D. Threats to Validity

This quantitative study has three major threats to validity.
The first threat is that there is not a large amount of data, so we
cannot ensure that our data falls on a normal distribution and is
fully generalizable. The second threat is that the programmers
participating in the eye-tracking study may have altered their
normal reading patterns due to the stress and circumstances



TABLE I: Statistical summary of the results for RQ4, RQ5, and RQ6. Wilcoxon test values are U , Uexpt, and Uvari. Decision
criteria are Z, Zcrit, and p. A “Sample” is one programmer for one method.

RQ H Pattern Type Samples x̃ Vari. U Uexpt Uvari Z Zcrit p

RQ5 H1
Natural 132 1.001 0.000196 4199 4064 172720.000 1.645 0.325 0.373Unnatural 132 0.999 0.000196

RQ6 H2
Skim 132 0.979 0.001600 8778 4389 192514.875 1.645 >3.75 <1e-3Thorough 132 0.021 0.001600

RQ7 H3
Disorderly 132 0.698 0.002116 8771 4389 193847.375 1.645 >3.75 <1e-3Sectionally 132 0.302 0.002116

that naturally appear during a research study. The third threat
is that the programmers may have had their eyes partially
focused on one word while also looking at another. This is
a phenomenon Rayner refers to as the peripheral span [12].

VII. QUANTITATIVE STUDY RESULTS

In this section, we present our results to each research ques-
tion. We also present some examples for how we formulated
our answers and our rationale behind those answers.

A. RQ5: Source Code and Natural
Language Text Comparison

We found no statistical evidence that programmers tend
to read using their English text reading patterns. In fact, we
found that programmers read from left-to-right or from top-
to-bottom almost exactly as much as they read from right-to-
left or from bottom-to-top. On average, programmers followed
a natural language text reading pattern about 49% of the
time. To determine significance, we computed the percentage
that programmers tended to read left-to-right or top-to-bottom
versus the percentage that programmers tended to read right-
to-left or bottom-to-top. We then posed H1:

Hn The difference between the computed metric for
reading code the same as reading English text and
reading code differently from reading English text is
not statistically-significant.

Using the Wilcoxon signed-rank test, we could not reject
the null hypothesis (see table 1). These results indicate that
programmers do not necessarily prefer reading code using a
similar pattern to how they read natural language text.

B. RQ6: Reading Technique:
Skimming versus Thorough

We found statistically significant evidence that programmers
tend to skim code rather than read it in-depth. On average,
programmers thoroughly read about 10% of each method.
To determine significance, we computed the percentage that
programmers tended to thoroughly read the code versus the
percentage that programmers quickly skimmed through it. We
then posed H2:
Hn The difference between the computed metric for

thoroughly reading code and skimming code is not
statistically-significant.

Using the Wilcoxon signed-rank test, we rejected the null
hypothesis (see table 1). These results indicate that program-
mers do not thoroughly read through source as much as they
quickly skim through it.

C. RQ7: Scanning Technique:
Disorderly versus Sectionally

We found statistically significant evidence that programmers
tend to jump around code in a seemingly disorderly manner
when reading code, as opposed to moving from section to
section as they read. On average, programmers read in sec-
tions about 25% of the time. To determine significance, we
computed the percentage that programmers stayed in a section
when reading code versus the percentage that programmers
jumped from section to section. We then posed H3:
Hn The difference between the computed metric for

reading code in a sectional manner and reading code
in a disorderly manner is not statistically-significant.

Using the Wilcoxon signed-rank test, we rejected the null
hypothesis (see table 1). These results indicate that program-
mers prefer to read code by jumping between sections rather
than reading code one section at a time.

D. RQ8: Similarities:
Programmer by Programmer

We found statistically significant evidence showing that all
of the programmers followed very similar patterns in reading
overall. When comparing the results of the three research
questions above between each programmer, the results were
almost identical. To determine significance, we computed a
representative value for a reading pattern for every program-
mer and every method. Then, we compared each value to see
how similar they were to each other. We then posed H4:
Hn The similarities amongst the computed metric for a

programmer’s reading pattern for all programmers
and methods are not statistically-significant.

Using one-way ANOVA test, we rejected the null hypothesis
(see table 2). These results indicate that programmers do all
read code in a similar manner as each other.

E. Summary of Quantitative Results

We derive three main interpretations from our quantitative
analysis results. The first interpretation is that programmers
read through source code from all directions. As indicated
by the statistical results, programmers appear to have no



TABLE II: Statistical summary of the results for RQ7. ANOVA test values are Degrees of Freedom (DF ), Sum of Squares
(SS), Mean Sum of Squares (MS). Decision criteria are F , Fcrit, and p. A “Sample” is one programmer for one method.

RQ H Pattern Type Samples x̃ Vari. Source DF SS MS F Fcrit p

RQ8 H4 All 132 1.323 0.0025
Model 8 0.160 0.020 14.168 2.009 <1e-3
Error 123 0.174 0.001

Corrected 131 0.333

preference for when they start and stop reading a section of
code. This lack of preference may be an artifact of both lines of
source code not have as formal of a structure as lines of natural
language text and, for the purposes of summarizing code, some
of the more important keywords may be towards the right and
bottom of the overall code. The second interpretation is that
programmers prefer to be thorough as little as possible. For
both the reading and scanning techniques, the less thorough
of the techniques was preferable. This preference of a less
thorough behavior may be from the fact that the more thorough
techniques are more time-consuming. The third interpretation
is that, in general, programmers follow similar reading patterns
compared to other programmers.

VIII. DISCUSSION

Our paper contributes to the software engineering literature
with empirical evidence of programmer behaviour during
summarization tasks. These findings show that programmers
follow reading patterns that tend to give them a quicker
understanding of the program, as opposed to a more in-depth
understanding. First, we found that programmers tend to read
with a natural text progression, from left-to-right or from
top-to-bottom, almost exactly half of the time that they are
reading source code. This finding shows that programmers
don’t follow the natural language reading pattern exactly,
but they do not completely ignore it either. Second, we
found that programmers tend to read by skimming the code
rather than slowly, thoroughly going through it. Thirdly, we
found that programmers tend to read by jumping around to
different important keywords spread across the code rather
than finishing one section of code at a time before moving on
to the next.

One potential explanation that programmers don’t necessar-
ily follow natural language text reading patterns is because of
the lack of bias towards reading code in any particular way. It
is possible that, when it comes to natural language text, most
people are educated from an early age to read it in a very
specific way in order to comprehend it best. People are taught
to read it from the beginning to the end, thoroughly, in order to
best determine the meaning of words, phrases, and the work
as a whole. People are also taught to write from beginning
to end, getting all of our thoughts on paper in a structured,
linear way. However, when it comes to source code, people are
likely not taught to look at it a certain way when attempting
comprehension. Our analysis could be used to improve the
overall educational process for programming.

An additional benefit of this work is the future improve-
ment of source code summarization tools. Different source

code summarization tools have generated natural language
summaries [27], [28], [29], [30], [31]. These approaches have
largely been built from program comprehension studies of
tasks other than summarization or studies that did not take
reading patterns into mind. Where there were no studies that
provided information, these tools made assumptions about
how programmers read code and what programmers need
in summaries. We have shown that programmers do follow
certain reading patterns during summarization tasks. Our work
can assist code summarization research by providing a guide
to what order programmers need to see keywords. At the
same time, our work may assist in creating metrics for source
code comment quality [32] by providing evidence about which
keywords the comments should describe and where in the code
these comments should be located.

Although this work does show important evidence that
contributes to software engineering, there is some future work
to expand upon this research that we believe will be beneficial.
A major area of future work is to create an algorithm that
can accurately predict the order in which a programmer
will read keywords in a given source code method. If the
algorithm could at least predict the flow of a programmer’s
summarization attempt, it could go a long way to helping
determine what keywords should be highlighted or included
in a comment or summary. This algorithm could incorporate
our findings from this study.

Another area of future work is to improve upon this study by
considering some of the study’s limitations. The results were
relatively stable for how similar each programmer’s reading
patterns were compared to each other; however, it would make
the results more concrete if we were able to incorporate more
programmers and a wider range of source code methods. Also,
due to the software used to run the eye-tracking machine,
the source code methods were limited to 22 LOC or less,
restricting the types of methods that could be used. Finally,
we would like to also expand the qualitative work by using a
heat map program or eye movement classification software
to add an automated approach to our manual one. These
improvements would greatly enhance our results.

IX. CONCLUSION

We have presented a qualitative and quantitative study about
programmers during source code summarization. We have
explored eight Research Questions aimed at understanding
the patterns programmers follow when reading and attempting
to summarize code. We showed that programmers tend to
read source code a little differently than they read natural
language text. We showed programmers prefer to read source



code using rapid techniques such as skimming and jumping
around, as opposed to more thorough techniques, such as in-
depth and sectional reading. Our findings lead us to conclude
that programmers not only follow specific patterns when they
read and summarize source code, but they also all tend to use
similar patterns compared to each other.
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