
Improving Automated Source Code Summarization
via an Eye-Tracking Study of Programmers

Paige Rodeghero, Collin McMillan, Paul W. McBurney,
Nigel Bosch, and Sidney D’Mello

Department of Computer Science and Engineering
University of Notre Dame

Notre Dame, IN, USA
{prodeghe, cmc, pmcburne, pbosch1, sdmello}@nd.edu

ABSTRACT
Source Code Summarization is an emerging technology for
automatically generating brief descriptions of code. Current
summarization techniques work by selecting a subset of the
statements and keywords from the code, and then includ-
ing information from those statements and keywords in the
summary. The quality of the summary depends heavily on
the process of selecting the subset: a high-quality selection
would contain the same statements and keywords that a pro-
grammer would choose. Unfortunately, little evidence exists
about the statements and keywords that programmers view
as important when they summarize source code. In this pa-
per, we present an eye-tracking study of 10 professional Java
programmers in which the programmers read Java methods
and wrote English summaries of those methods. We apply
the findings to build a novel summarization tool. Then, we
evaluate this tool and provide evidence to support the de-
velopment of source code summarization systems.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.9 [Software
Engineering]: Management—Productivity

General Terms
Algorithms, Documentation

Keywords
Source code summaries, program comprehension

1. INTRODUCTION
Programmers spend a large proportion of their time read-

ing and navigating source code in order to comprehend it [36,
31, 52]. However, studies of program comprehension con-
sistently find that programmers would prefer to focus on
small sections of code during software maintenance [52, 35,
36, 20], and “try to avoid” [45] comprehending the entire
system. The result is that programmers skim source code
(e.g., read only method signatures or important keywords)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14, June 01 - 07 2014, Hyderabad, Andhra Pradesh, India
Copyright 2014 ACM 978-1-4503-2756-5/14/06 ...$15.00.

to save time [58]. Skimming is valuable because it helps
programmers quickly understand the underlying code, but
the drawback is that the knowledge gained cannot easily be
made available to other programmers.

An alternative to skimming code is to read a summary of
the code. A summary consists of a few keywords, or a brief
sentence, that highlight the most-important functionality of
the code, for example “record wav files” or “xml data pars-
ing.” Summaries are typically written by programmers, such
as in leading method comments for JavaDocs [33]. These
summaries are popular, but have a tendency to be incom-
plete [15, 28] or outdated as code changes [21, 50].

As a result, automated source code summarization tools
are emerging as viable techniques for generating summaries
without human intervention [10, 39, 42, 54, 57, 63]. These
approaches follow a common strategy: 1) choose a subset of
keywords or statements from the code, and 2) build a sum-
mary from this subset. For example, Haiduc et al. described
an approach based on automated text summarization using
a Vector Space Model (VSM) [26]. This approach selects the
top-n keywords from Java methods according to a term fre-
quency / inverse document frequency (tf/idf) formula. Tak-
ing a somewhat different approach, Sridhara et al. designed
heuristics to choose statements from Java methods, and then
used keywords from those statements to create a summary
using sentence templates [55].

In this paper, we focus on improving the process of se-
lecting the subset of keywords for summaries. The long-
term goal is to have the automated selection process choose
the same keywords that a programmer would when writing
a summary. Future research in automated summarization
could then be dedicated to the summary building phase.

Our contribution is three-fold. First, we conduct an eye-
tracking study of 10 Java programmers. During the study,
the programmers read Java methods and wrote summaries
for those methods. Second, we analyzed eye movements and
gaze fixations of the programmers to identify common key-
words the programmers focused on when reviewing the code
and writing the summaries. This analysis led us to differ-
ent observations about the types of keywords programmers
tended to view. We realized these observations were not
sufficient enough to prove that only those types of keywords
should be included in method summaries. We then designed
a tool that selects keywords from Java methods. Finally, we
compared the keyword selections from our tool to the key-
words selected using a state-of-the-art approach [26]. We
found that our tool improved over the state-of-the-art when
compared to keyword lists written by human evaluators.

2. THE PROBLEM
We address the following gap in the current program com-

prehension literature: there are no studies of how program-
mers read and understand source code specifically for the
purpose of summarizing that source code. This gap presents
a significant problem for designers of automated source code
summarization tools. Without studies to provide evidence
about the information that programmers use to create sum-
maries, these designers must rely on intuitions and assump-
tions about what should be included in a summary. In
one solution, Haiduc et al. proposed to adapt ideas from
text summarization, and developed a tool that creates sum-
maries by treating source code as blocks of natural language
text [26]. Moreno et al. [42] and Eddy et al. [18] have built
on this approach and verified that it can extract keywords
relevant to the source code being summarized. Still, a con-
sistent theme across all three of these studies is that different
terms are relevant for different reasons, and that additional
studies are necessary to understand what programmers pri-
oritize when summarizing code.

Another strategy to creating summaries is to describe a
high-level behavior of the code. The goal is to connect the
summary to a feature or concept which a programmer would
recognize. For example, Sridhara et al. create summaries by
matching known patterns of features to Java methods [56].
In prior work, they had identified different heuristics for
statements within Java methods, to describe the key func-
tionality of these methods [55]. While these approaches are
effective for certain types of methods or statements, they
still rely on assumptions about what details the program-
mers need to see in the summaries. In both of these works,
a significant focus was placed on evaluating the conciseness
of the summaries – that is, whether the generated summaries
described the appropriate information. Hence, in our view,
existing summarization tools could be improved if there were
more basic data about how programmers summarize code.

3. RELATED WORK
This section will cover related work on program compre-

hension and eye-tracking studies in software engineering, as
well as source code summarization techniques.

3.1 Studies of Program Comprehension
There is a rich body of studies on program comprehen-

sion. Holmes et al. and Ko et al. have observed that many
of these studies target the strategies followed by program-
mers and the knowledge that they seek [31, 27]. For ex-
ample, during maintenance tasks, some programmers follow
a “systemic” strategy aimed at understanding how different
parts of the code interact [30, 38]. In contrast, an “oppor-
tunistic” strategy aims to find only the section of code that
is needed for a particular change [9, 32, 14, 35]. In either
strategy, studies suggest that programmers form a mental
model of the software [36], specifically including the relation-
ships between different sections of source code [41, 34, 50,
51]. Documentation and note-taking is widely viewed as im-
portant because programmers tend to forget the knowledge
they have gained about the software [1, 17]. At the same
time, programmers are often interrupted with requests for
help with understanding source code [23], and written notes
assist developers in answering these questions [24].

Different studies have analyzed how programmers use the
documentation and notes. One recent study found that

programmers prefer face-to-face communication, but turn
to documentation when it is not available [45]. The same
study found that programmers read source code only as a
last resort. The study confirms previous findings that, while
reading source code is considered a reliable way of under-
standing a program, the effort required is often too high [58,
22]. These studies provide a strong motivation for auto-
mated summarization tools, but few clues about what the
summaries should contain. Some studies recommend an in-
cremental approach, such that documentation is updated
as problems are found [25, 7]. Stylos et al. recommend
highlighting summaries of code with references to depen-
dent source code [60]. These recommendations corrobo-
rate work by Lethbridge et al. that found that documen-
tation should provide a high-level understanding of source
code [37]. Taken together, these studies point to the type of
information that should be in code summaries, but not to
the details in the code which would convey this information.

3.2 Eye-Tracking in Software Engineering
Eye-tracking technology has been used in only a few stud-

ies in software engineering. Crosby et al. performed one
early study, and concluded that the process of reading source
code is different from the process of reading prose [13]. Pro-
grammers alternate between comments and source code, and
fixate on important sections, rather than read the entire
document at a steady pace [13]. Despite this difference,
Uwano et al. found that the more time programmers take
to scan source code before fixating on a particular section,
the more likely they are to locate bugs in that code [61]. In
two separate studies Bednarik et al. found that repetitively
fixating on the same sections is a sign of low programming
experience, while experienced programmers target the out-
put of the code, such as evaluation expressions [6, 5]. In
this paper, we suggest that summaries should include the
information from the areas of code on which programmers
typically fixate. These previous eye-tracking studies suggest
that the summaries may be especially helpful for novice pro-
grammers. Moreover, several of these findings have been in-
dependently verified. For example, Sharif et al. confirm that
scan time and bug detection time are correlated [47]. Eye-
tracking has been used in studies of identifier style [49, 8]
and UML diagram layout [46, 48], showing reduced compre-
hension when the code is not in an understandable format.

3.3 Source Code Summarization
The findings in this paper can benefit several summariza-

tion tools. Some work has summarized software by show-
ing connections between high- and low-level artifacts, but
did not produce natural language descriptions [43]. Work
that creates these descriptions includes work by Sridhara et
al. [55, 57], Haiduc et al. [26], and Moreno et al. [42] as
mentioned above. Earlier work includes approaches to ex-
plain failed tests [64], Java exceptions [11], change log mes-
sages [12], and systemic software evolution [29]. Studies
of these techniques have shown that summarization is ef-
fective in comprehension [18] and traceability link recov-
ery [3]. Nevertheless, no consensus has developed around
what characterizes a “high quality” summary or what infor-
mation should be included in these summaries.

3.4 Vector Space Model Summarization
One state-of-the-art technique for selecting keywords from

source code for summarization is described by Haiduc et al..

Their approach selects keywords using a Vector Space Model
(VSM), which is a classic natural language understanding
technique [26]. A VSM is a mathematical representation
of text in which the text is modeled as a set of documents
containing terms. For source code, Haiduc et al. treat meth-
ods as documents and keyword tokens (e.g., variable names,
functions, and datatypes) as terms. Then the code is rep-
resented as a large vector space, in which each method is
a vector. Each term is a potential direction along which
the vectors may have a magnitude. If a term appears in a
method, the magnitude of the vector along the “direction”
of that term is assigned a non-zero value. For example, this
magnitude may be the number of occurrences of a keyword
in a method, or weighted based on where the keyword occurs
in the method.

Haiduc et al. assign these magnitude values using a term
frequency / inverse document frequency (tf/idf) metric. This
metric ranks the keywords in a method body based on how
specific those keywords are to that method. Tf/idf gives
higher scores to keywords which are common within a par-
ticular method body, but otherwise rare throughout the rest
of the source code. In the approach by Haiduc et al., the
summary of each method consists of the top-n keywords
based on these tf/idf scores. An independent study carried
out by Eddy et al. has confirmed that these keywords can
form an accurate summary of Java methods [18]. See Sec-
tion 6.3 for an example of the output from this approach.

4. EYE-TRACKING STUDY DESIGN
This section describes our research questions, the method-

ology of our eye-tracking study, and details of the environ-
ment for the study.

4.1 Research Questions
The long-term goal of this study is to discover what key-

words from source code should be included in the summary
of that code. Towards this goal, we highlight four areas of
code that previous studies have suggested as being useful
for deriving keywords. We study these areas in the four
Research Questions (RQ) that we pose:

RQ1 To what degree do programmers focus on the keywords
that the VSM tf/idf technique [26, 18] extracts?

RQ2 Do programmers focus on a method’s signature more
than the method’s body?

RQ3 Do programmers focus on a method’s control flow
more than the method’s other areas?

RQ4 Do programmers focus on a method’s invocations
more than the method’s other areas?

The rationale behind RQ1 is that two independent stud-
ies have confirmed that a VSM tf/idf approach to extract-
ing keywords outperforms different alternatives [26, 18]. If
programmers tend to read these words more than others,
it would provide key evidence that the approach simulates
how programmers summarize code. Similarly, both of these
studies found that in select cases, a “lead” approach out-
performed the VSM approach. The lead approach returns
keywords from the method’s signature. Therefore, in RQ2,
we study the degree to which programmers emphasize these
signature terms when reading code. We pose RQ3 in light of
related work which suggests that programmers comprehend

code by comprehending its control flow [16, 31], while con-
tradictory evidence suggests that other regions may be more
valuable [2]. We study the degree to which programmers fo-
cus on control flow when summarizing code, to provide guid-
ance on how it should be prioritized in summaries. Finally,
the rationale behind RQ4 is that method invocations are
repeatedly suggested as key elements in program compre-
hension [40, 50, 31, 60]. Keywords from method calls may
be useful in summaries if programmers focusing on them
when summarizing code.

4.2 Methodology
We designed a research methodology based on the related

studies of eye-tracking in program comprehension (see Sec-
tion 3.2). Participants were individually tested in a one hour
session consisting of reading, comprehending, and summa-
rizing Java methods. Methods were presented one at a time
and eye gaze was captured with a commercial eye-tracker.
Figure 1 shows the system interface. The method was shown
on the left, and the participant was free to spend as much
time as he or she desired to read and understand the method.
The participant would then write a summary of the method
in the text box on the top-right. The bottom-right box was
an optional field for comments. The participant clicked on
the button to the bottom-right to move to the next method.

4.2.1 Data Collection
The eye-tracker logged the time and location (on the screen)

of the participants’ eye gaze. The interface also logged the
methods and keywords displayed at these locations. From
these logs, we calculated three types of eye-movement behav-
ior to answer our research questions: gaze time, fixations,
and regressions. Gaze time is the total number of millisec-
onds spent on a region of interest (ROI - e.g., a method,
a keyword). Fixations are any locations that a participant
viewed for more than 100 milliseconds. Regressions are lo-
cations that the participant read once, then read again after
reading other locations. These three types of eye movements
are widely used in the eye-tracking literature [44, 13, 61].
Taken together, they provide a model for understanding how
the participants read different sections of the source code.
Section 5 details how we use these data to answer each of
our research questions.

4.2.2 Subject Applications
We selected a total of 67 Java methods from six differ-

ent applications: NanoXML, Siena, JTopas, Jajuk, JEdit,
and JHotdraw. These applications were all open-source and
varied in domain, including XML parsing, text editing, and
multimedia. The applications ranged in size from 5 to 117
KLOC and 318 to 7161 methods. We randomly selected a
total of 67 methods from these applications. While the se-
lection was random, we filtered the methods based on two
criteria. First, we removed trivial methods, such as get, set,
and empty methods. Second, we removed methods greater
than 22 LOC because they could not be displayed on the
eye tracking screen without scrolling, which creates com-
plications in interpreting eye movement (see Section 4.2.6).
Methods were presented to the participants in a random or-
der. However, to ensure some overlap for comparison, we
showed all participants the five largest methods first.

Figure 1: Interface of the eye-tracking device.

4.2.3 Participants
We recruited 10 programmers to participate in our study.

These programmers were employees of the Computing Re-
search Center (CRC) at the University of Notre Dame. Note
that developers at the CRC are not students, they are pro-
fessional programmers engaged in projects for different de-
partments at Notre Dame. Their programming experience
ranged from 6 to 27 years, averaging 13.3 years.

4.2.4 Statistical Tests
We compared gaze time, fixation, and regression counts

using the Wilcoxon signed-rank test [62]. This test is non-
parametric and paired, and does not assume a normal distri-
bution. It is suitable for our study because we compare the
gaze times for different parts of methods (paired for each
method) and because our data may not be normally dis-
tributed.

4.2.5 Equipment
We used a Tobii T300 Eye-Tracker device for our study.

The device has a resolution of 1920x1080 and a 300 Hz sam-
pling rate. A technician was available at all times to monitor
the equipment. The sampling rate was lowered to 120Hz to
reduce computational load; such a sample rate is acceptable
for simple ROI analyses like the ones conducted here.

4.2.6 Threats to Validity
Our methodology avoids different biases and technical lim-

itations. We showed the method as black-on-beige text to
prevent potential bias from syntax highlighting preferences
and distractions. However, this may introduce a bias if the
programmers read the code outside of a familiar environ-
ment, such as an IDE. To avoid fatigue effects, we ended the
study after one hour, regardless of the number of methods
summarized. The text boxes were shown on screen, rather
than collected on paper, because of eye tracking complica-
tions when the participant repeatedly looks away from the
screen. We were also limited in the size of the Java meth-
ods: the interface did support scrolling or navigation, and
accuracy decreases as the font becomes smaller. These lim-
itations forced us to choose methods which were at most 22
lines long and 93 characters across. Therefore, we cannot
claim that our results are generalizable to methods of an
arbitrary size.

4.2.7 Reproducibility
For the purposes of reproducibility and independent study,

we have made all data available via an online appendix:
http://www3.nd.edu/~prodeghe/projects/eyesum/

5. EYE-TRACKING STUDY RESULTS
In this section, we present our answer to each research

question, as well as our data, rationale, and interpretation
of the answers. These answers are the basis for the keyword
selection approach we present in Section 6.

5.1 RQ1: VSM tf/idf Comparison
We found evidence that the VSM tf/idf approach extracts

a list of keywords that approximates the list of keywords
that programmers read during summarization. Two types
of data supporting this finding are shown in Figure 2. First,
we calculated the overlap between the top keywords from the
VSM approach and the top keywords that programmers read
during the study according to gaze time. For example, for
the method getLongestMatch, programmers gaze time was
highest for the keywords currentMatch, iter, currentMax,
getLongestMatch, and hasNext. The overlap for the top five
was 60% because VSM approach returned currentMatch,
retprop, currentmax, iter, and len. Second, we computed
the Pearson correlation between the gaze time and the VSM
tf/idf values for the keywords in all methods. Full data for
these calculations is available via our online appendix.

On average, five of the top ten keywords selected by the
VSM tf/idf approach overlapped with the top ten keywords
that programmers read during the study. Similarly, between
two and three of the top five keywords overlapped. The cor-
relation between the gaze time and VSM value was 0.35 on
average, but varied between -0.28 and 0.94. The correlation
was negative for only seven of 53 methods. These results
indicate that when the VSM tf/idf value for a keyword is
high, the gaze time for that keyword is also likely to be high.
But, only about half of the keywords in a method’s top five
or ten list from VSM are likely to match the keywords that
programmers read and view as important. While the VSM
tf/idf approach selects many appropriate keywords from a
method, further improvements are necessary to choose the
keywords that programmers read while summarizing code.

Figure 2: Data for RQ1. Plots to the left show per-
centage overlap of VSM tf/idf top keywords to the
top most-read keywords in terms of gaze time. Plot
to the right shows Pearson correlation between VSM
tf/idf values and gaze time for all keywords. The
white line is the mean. The black box is the lower
quartile and the gray box is the upper quartile. The
thin line extends from the minimum to the maxi-
mum value, excluding outliers.

Table 1: Statistical summary of the results for RQ2, RQ3, and RQ4. Wilcoxon test values are U , Uexpt, and
Uvari. Decision criteria are Z, Zcrit, and p. A “Sample” is one programmer for one method.

RQ H Metric Method Area Samples x̃ µ Vari. T Texpt Tvari Z Zcrit p

RQ2

H1 Gaze
Signature 95 1.061 1.784 4.237

2808 2280 72580 1.96 1.65 0.025
Non-Sig. 95 0.996 0.933 0.054

H2 Fixation
Signature 95 1.150 1.834 4.451

3008 2280 72580 2.70 1.65 0.003
Non-Sig. 95 0.984 0.926 0.050

H3 Regress.
Signature 95 0.830 1.436 3.607

2307 2280 72580 0.10 1.65 0.459
Non-Sig. 95 1.014 0.978 0.032

RQ3

H4 Gaze
Ctrl. Flow 111 0.781 0.924 0.392

1956 3108 115514 -3.389 1.96 0.001
Non-Ctrl. 111 1.116 1.134 0.145

H5 Fixation
Ctrl. Flow 111 0.834 0.938 0.274

2140 3108 115514 -2.848 1.96 0.004
Non-Ctrl. 111 1.071 1.122 0.130

H6 Regress.
Ctrl. Flow 111 0.684 0.813 0.269

1463 3108 115514 -4.840 1.96 <1e-3
Non-Ctrl. 111 1.132 1.199 0.165

RQ4

H7 Gaze
Invocations 106 0.968 1.069 0.778

2586 2836 100660 -0.786 1.96 0.432
Non-Invc. 106 1.021 1.027 0.086

H8 Fixation
Invocations 106 1.003 1.048 0.385

2720 2835 100660 -0.364 1.96 0.716
Non-Invc. 106 0.998 1.020 0.064

H9 Regress.
Invocations 106 1.028 1.045 0.065

2391 2835 100660 -1.399 1.96 0.162
Non-Invc. 106 1.028 1.045 0.065

5.2 RQ2: Method Signatures
We found statistically-significant evidence that, during

summarization, programmers read a method’s signature mo-
re-heavily than the method’s body. The programmers read
the signatures in a greater proportion than the signatures’
sizes. On average, the programmers spent 18% of their gaze
time reading signatures, even though the signatures only av-
eraged 12% of the methods. The pattern suggested by this
average is consistent across the different methods and par-
ticipants in our study.

The following describes the procedure we followed to draw
this conclusion: Consider the statistical data in Table 1. We
compared the adjusted gaze time, fixation, and regression
count for the keywords in the signatures to the keywords in
the method bodies. To compute the gaze time percentage,
we calculated the amount of time that the programmer spent
reading the signature keywords for a given method. Then we
adjusted that percentage based on the size of the signature.
For example, if a programmer spent 30% of his or her time
reading a method’s signature, and the signature contains 3
of the 20 keywords (15%) in a method, then the adjusted
gaze time metric would be 30/15 = 2. For the fixation and
regression metrics, we computed the percentage of fixations
on and regressions to the signature or body, and adjusted
these values for size in the same manner as gaze time. We
then posed three hypotheses (H1, H2, and H3) as follows:

Hn The difference between the adjusted [gaze time / fix-
ation / regression] metric for method signatures and
method bodies is not statistically-significant.

We tested these hypotheses using a Wilcoxon test (see Sec-
tion 4.2.4). We reject a hypothesis only when |Z| is greater
than Zcrit for a p is less than 0.05. For RQ2, we rejected
two of these three null hypotheses (H1 and H2 in Table 1).
This indicates that the programmers spent more gaze time,
and fixated more often on, the method signatures than the
method bodies, when adjusted for the size of the signatures.
We did not find a statistical difference in the regression time,
indicating that the programmers did not re-read the signa-
tures more than the methods’ body keywords.

5.3 RQ3: Control Flow
We found statistically significant evidence that program-

mers tended to read control flow keywords less than the key-
words from other parts of the method. On average, program-
mers spent 31% of their time reading control flow keywords,
even though these keywords averaged 37% of the keywords
in the methods. To determine the significance of the results,
we followed the same procedure outlined in Section 5.2: we
computed the adjusted gaze time, fixation, and regression
count for the control flow keywords versus all other key-
words. A “control flow” keyword included any keyword in-
side of a control flow statement. For example, for the line
if(area < maxArea), the control flow keywords are “area”
and “maxArea.” We then posed H4, H5, and H6:

Hn The difference between the adjusted [gaze time / fixa-
tion / regression] metric for control flow keywords and
all other keywords is not statistically-significant.

Using the Wilcoxon test, we rejected all three null hy-
potheses (see RQ3 in Table 1). These results indicate that
the programmers did not read the control flow keywords as
heavily as other keywords in the code.

5.4 RQ4: Method Invocations
We found no evidence that programmers read keywords

from method invocations more than keywords from other
parts of the methods. Programmers read the invocations
in the same proportion as they occurred in the methods.
We defined invocation keywords as the keywords from the
invoked method’s name and parameters. For example, for
the line double ca = getArea(circle, 3), the invocation
keywords would be “getarea” and “circle,” but not “double”
or “ca.” We then posed three hypotheses (H5, H6, and H7):

Hn The difference between the adjusted [gaze time / fixa-
tion / regression] metric for invocation keywords and
all other keywords is not statistically-significant.

As shown in Table 1, the Wilcoxon test results were not
conclusive for RQ4. These results indicate that the pro-
grammers read the invocations in approximately the same
proportion as other keywords.

5.5 Summary of the Eye-Tracking Results
We derive two main interpretations of our eye-tracking

study results. First, the VSM tf/idf approach roughly ap-
proximates the list of keywords that programmers read dur-
ing summarization, with about half of the top 10 keywords
from VSM matching those most-read by programmers. Sec-
ond, programmers prioritize method signatures above in-
vocation keywords, and invocation keywords above control
flow keywords. We base our interpretation on the finding
that signature keywords were read more than other key-
words, invocations were read about the same, and control
flow keywords were read less than other keywords. In ad-
dition, the adjusted gaze time for method signatures (H1)
averaged 1.784, versus 1.069 for invocations (H7) and 0.924
for control flow (H4). An adjusted value of 1.0 for an area of
code means that the programmers read that area’s keywords
in a proportion equal to the proportion of keywords in the
method that were in that area. In our study, the adjusted
gaze times were greater than 1.0 for signatures and invoca-
tions, but not for control flow keywords. Our conclusion is
that the programmers needed the control flow keywords less
for summarization than the invocations, and the invocations
less than the signature keywords.

6. OUR APPROACH
In this section, we describe our approach for extracting

keywords for summarization. Generally speaking, we im-
prove the VSM tf/idf approach we studied in RQ1 using the
eye-tracking results from answering RQ2, RQ3, and RQ4.

6.1 Key Idea
The key idea behind our approach is to modify the weights

we assign to different keywords, based on how programmers
read those keywords. In the VSM tf/idf approach, all oc-
currences of terms are treated equally: the term frequency
is the count of the number of occurrences of that term in a
method (see Section 3.4). In our approach, we weight the
terms based on where they occur. Specifically, in light of our
eye-tracking results, we weight keywords differently if they
occur in method signatures, control flow, or invocations.

6.2 Extracting Keywords
Table 2 shows four different sets of weights. Each set cor-

responds to different counts for keywords from each code
area. For the default VSM approach [26], denoted VSMdef ,
all occurrences of terms are weighted equally. In one con-
figuration of our approach, labeled EyeA, keywords from
the signature are counted as 1.8 occurrences, a keyword is
counted as 1.1 if is occurs in the a method invocation, and
0.9 if in a control flow statement (if a keyword occurrence
is in both a control flow and invocation area, we count it as
in control flow). These weights correspond to the different
weights we found for these areas in the eye-tracking study
(see Section 5.5). EyeB and EyeC work similarly, except
with progressively magnified differences in the weights

These changes in the weights mean that keywords appear-
ing in certain code areas are inflated, allowing those key-
words to be weighted higher than other keywords with the
same number of occurrences, but in less important areas.
After creating the vector space for these methods and key-
words, we score each method’s keywords using tf/idf, where
term frequency of each term is defined by its own weighted
score, rather than the raw number of occurrences.

Table 2: The weight given to terms based on the
area of code where the term occurs.

Code Area VSMdef EyeA EyeB EyeC
Method Signature 1.0 1.8 2.6 4.2
Method Invocation 1.0 1.1 1.2 1.4

Control Flow 1.0 0.9 0.8 0.6
All Other Areas 1.0 1.0 1.0 1.0

6.3 Example
In this section, we give an example of the keywords that

our approach and the default VSM tf/idf approach generate
using the source code in Figure 3. In this example, where
VSM tf/idf increments each weight a fixed amount of each
occurence of a term, we increment by our modified weights
depending on contextual information. Consider the keyword
list below:

Keywords Extracted by Default VSM Approach

“textarray, text, match, offset, touppercase”

The term “textArray” occurs in 2 of 6902 different meth-
ods in the project. But it occurs twice in the region-

Matches(), and therefore the default VSM tf/idf approach
places it at the top of the list. Likewise, “text” occurs in 125
different methods, but four times in this method. But other
keywords, such as “ignoreCase”, which occurs in the signa-
ture and control flow areas, may provide better clues about
the method than general terms such as “text”, even though
the general terms appear often. Consider the list below:

Keywords Extracted by Our Approach

“match, regionmatches, text, ignorecase, offset”

The term“match” is ranked at the top of the list in our ap-
proach, moving from position three in the default approach.
Two keywords, “regionMatches” and “ignoreCase”, that ap-
pear in our list do not appear in the list from the default
approach. By contrast, the previous approach favors “toUp-
perCase”over“ignoreCase”because“toUpperCase”occurs in
22 methods, even though both occur twice in this method.
These differences are important because it allows our ap-
proach to return terms which programmers are likely to read
(according to our eye-tracking study), even if those terms
may occur slightly more often across all methods.

public static boolean regionMatches(boolean ignoreCase,
Segment text, int offset, char[] match) {
int length = offset + match.length;
if(length > text.offset + text.count)

return false;
char[] textArray = text.array;
for(int i = offset, j = 0; i < length; i++, j++)
{

char c1 = textArray[i];
char c2 = match[j];
if(ignoreCase)
{

c1 = Character.toUpperCase(c1);
c2 = Character.toUpperCase(c2);

}
if(c1 != c2)

return false;
}
return true;

}

Figure 3: Source Code for Example.

7. EVALUATION OF OUR APPROACH
This evaluation compares the keyword lists extracted by

our approach to the keyword lists extracted by the state-of-
the-art VSM tf/idf approach [26]. In this section, we de-
scribe the user study we conducted, including our method-
ology, research subjects, and evaluation metrics.

7.1 Research Questions
Our objective is to determine the degree to which our ap-

proach and the state-of-the-art approach approximate the
list of keywords that human experts would choose for sum-
marization. Hence, we pose the following two questions:

RQ5 To what degree do the top-n keywords from our ap-
proach and the standard approach match the keywords
chosen by human experts?

RQ6 To what degree does the order of the top-n keywords
from our approach and the standard approach match
the order chosen by human experts?

The rationale behind RQ5 is that our approach should ex-
tract the same set of keywords that a human expert would
select to summarize a method. Note that human experts
rate keywords subjectively, so we do not expect the human
experts in our study to agree on every keyword, and the ex-
perts may not normally limit themselves to keywords within
one method. Nevertheless, a stated goal of our approach
is to improve over the state-of-the-art approach (e.g., VSM
tf/idf [26]), so we measure both approaches against multi-
ple human experts. In addition to extracting the same set
of keywords as the experts, our approach should extract the
keywords in the same order. The order of the keywords is
important because a summarization tool may only choose a
small number of the top keywords that are most-relevant to
the method. Therefore, we pose RQ6 to study this order.

7.2 Methodology
To answer our research questions, we conducted a user

study in which human experts read Java methods and ranked
the top five most-relevant keywords from each method. We
chose five as a value for the top-n to strike a balance be-
tween two factors: First, we aimed to maximize the number
of keywords that our approach can suggest to a summariza-
tion tool. However, a second factor is that, during pilot
studies, fatigue became a major factor when human experts
were asked to choose more than five keywords per method,
after reading several methods. Because fatigue can lead to
innaccurate results, we limited the keyword list size to five.

During the study, we showed the experts four Java meth-
ods from six different applications, for a total of 24 methods.
We used the same six applications that were selected for the
eye-tracking study in Section 4.2.2. Upon starting our study,
each expert was shown four randomly-selected methods from
a randomly-selected application. The expert read the first
method, then read a list of the keywords in that method.
The expert then chose five of those keywords that, in his or
her opinion, were most-relevant to the tasks performed by
the method. The expert also rank ordered those five key-
words from most-relevant to least-relevant. After the expert
finished this process for the four methods, we showed the
expert four more methods from a different application, until
he or she had ranked keyword lists for all 24 methods. For
the purpose of reproducibility, we have made our evaluation
interface available via our online appendix.

7.2.1 Participants
To increase generalizability of the results, the participants

in this study were different than the participants in the eye-
tracking study. We recruited nine human experts who were
skilled Java programmers among graduate students in the
Computer Science and Engineering department at the Uni-
versity of Notre Dame and other universities. These partic-
ipants had an average of 6.2 years of Java experience, and
10.5 years of general programming experience.

7.2.2 Evaluation Metrics and Tests
To compare the top-n lists for RQ5, we used one of the

same keyword list comparison metrics we used in Section 5.1:
overlap. For RQ6, to compare the lists in terms of their or-
der, we compute the minimizing Kendall tau distance, or
Kmin, between the lists. This metric has been proposed
specifically for the task of comparing two ordered top-n
lists [19, 4], and we follow the procedure recommended by
Fagin et al. [19]: For each top-n list for a Java method from
a human expert, we calculate the Kmin between that list
and the list extracted by our approach. We also calculate
the Kmin between the expert’s list and the list from the
state-of-the-art approach. We then compute the Kmin value
between the list from our approach and the list from the
state-of-the-art approach.

The results of this procedure are three sets of Kmin val-
ues for each configuration of our approach (EyeA, EyeB , and
EyeC): one between human experts and our approach, and
one between our approach and the state-of-the-art approach.
We also create one set of Kmin values between human ex-
perts and the state-of-the-art approach. To compare these
lists, we use a two-tailed Mann-Whitney statistical test [53].
The Mann-Whitney test is non-parametric, so it is appropri-
ate for this comparison where we cannot guarantee that the
distribution is normally distributed. The result of this test
allows us to answer our research question by determining
which differences are statistically-significant.

7.2.3 Threats to Validity
Our study carries threats to validity, similar to any eval-

uation. One threat is from the human experts we recruited.
Human experts are susceptible to fatigue, stress, and errors.
At the same time, differences in programming experience,
opinions, and personal biases can all affect the answers given
by the experts. We cannot rule out the possibility that our
results would differ if these factors were eliminated. How-
ever, we minimize this threat in two ways: first, by recruit-
ing nine experts rather than relying on a single expert, and
second by using statistical testing to confirm the observed
differences were significant.

Another key source of threat is in the Java source code
that we selected for our study. It is possible that our re-
sults would change given a different set of Java methods
for evaluation. We mitigated this threat by selecting the
methods from six different applications in a wide range of
domains and sizes. We also randomized the order in which
we showed the applications to the study participants, and
randomized the methods which we selected from those appli-
cations. The purpose of this randomization was to increase
the variety of code read by the participants, and minimize
the effects that any one method may cause in our results.
In addition, we released all data via our online appendix so
that other researchers may reproduce our work.

8. COMPARISON STUDY RESULTS
In this section, we present the results of the evaluation

of our approach. We report our empirical evidence behind,
and answers to, RQ5 and RQ6.

8.1 RQ5: Overlap of Keyword Lists
Our approach outperformed the default VSM tf/idf ap-

proach in terms of overlap. The best-performing configura-
tion of our approach was EyeC . It extracted top-5 keyword
lists that contain, on average, 76% of the keywords that pro-
grammers selected during the study. In other words, almost
4 out of 5 of the keywords extracted by EyeC were also se-
lected by human experts. In contrast 67% of the keywords,
just over 3 of 5, from VSMdef were selected by the pro-
grammers. Table 3 shows overlap values for the remaining
configurations of our approach. Values for columns marked
“Users” are averages of the overlap percentages for all key-
word lists from all participants for all methods. For other
columns, the values are averages of the lists for each method,
generated by a particular approach. For example, 94% of
the keywords in lists generated by EyeB were also in lists
generated by EyeC .

To confirm the statistical significance of these results, we
pose three hypotheses (H10, H11, and H12) of the form.

Hn The difference between the overlap values for keyword
lists extracted by [EyeA / EyeB / EyeC] to the progra-
mmer-created keyword lists, and the overlap values of
lists extracted by VSMdef to the programmer-created
lists is not statistically-significant.

For brevity, we only test hypotheses for overlap values
that are compared to human-written keyword lists. The
results of these tests are in Table 5. We rejected all three
hypotheses because the Z value exceeded Zcrit for p less than
0.05. Therefore, our approach’s improvement in overlap, as
compared to VSMdef , is statistically-significant. We answer
RQ5 by finding that overlap increases by approximately 9%
from the default VSM tf/idf approach (67%) to our best-
performing approach, EyeC (76%).

Figure 4(a) depicts a pattern we observed in overlap with
the expert-created lists: EyeA, EyeB , and EyeC progres-
sively increase. This pattern reflects the progressively-magn-
ified differences in weights for the three configurations of
our approach (see Section 6). As the weight differences are
increased, the approach returns keyword lists that more-
closely match the keyword lists written by human experts.

Table 3: Data for RQ5. Overlap for top-5 lists.

Users VSMdef EyeA EyeB EyeC

Users 1.00 0.67 0.72 0.75 0.76
VSMdef 0.67 1.00 0.90 0.84 0.78

EyeA 0.72 0.90 1.00 0.94 0.88
EyeB 0.75 0.84 0.94 1.00 0.94
EyeC 0.76 0.78 0.88 0.94 1.00

Table 4: Data for RQ6. Kmin for top-5 lists.

Users VSMdef EyeA EyeB EyeC

Users 0.00 0.54 0.50 0.46 0.43
VSMdef 0.54 0.00 0.20 0.31 0.40

EyeA 0.50 0.20 0.00 0.15 0.27
EyeB 0.46 0.31 0.15 0.00 0.16
EyeC 0.43 0.40 0.27 0.16 0.00

This finding is strong evidence that some areas of code should
be prioritized over other areas for summarization. The pro-
grammers in our study preferred the keywords from our ap-
proach by a statistically-significant margin. We expand on
the implications of these findings in Section 9.

8.2 RQ6: Keyword List Order
EyeC was the best-performing approach in terms of the

order of the keyword lists. We found statistically-significant
improvement by the approach over the default VSM tf/idf
approach in terms of Kmin, which we use to measure simi-
larity of list order (see Section 7.2.2). Table 4 presents the
Kmin values of VSMdef , EyeA, EyeB , and EyeC compared
to the human-written values, and compared to each other.
The Kmin distance between the lists from EyeC was 0.43 on
average. This distance compares to 0.54 for VSMdef . Con-
figurations with similar weights return similar keyword lists;
the Kmin distance between EyeA and EyeB is 0.15. Likewise,
VSMdef returns lists most-similar to EyeA (0.20 distance),
which has the least-exaggerated weights. EyeC returned the
lists most like those written by the human experts.

The differences in Kmin between our approach and the
default approach are statistically-significant. We tested the
statistical-significance using the same procedure as in the
previous section. We posed three hypotheses (H13, H14, and
H15) of the form:

Hn The difference between the Kmin values for keyword lists
extracted by [EyeA / EyeB / EyeC] to the progra-
mmer-created keyword lists, and the Kmin values of
lists extracted by VSMdef to the programmer-created
lists is not statistically-significant.

We rejected all three hypotheses based on the values in
Table 5. Therefore, our approach improved over the default
approach in terms of Kmin by a significant margin. The
interpretation of this finding is that the order of the key-

(a) Overlap.

(b) Kmin.

Figure 4: Overlap and Kmin values for the default
approach and three configurations of our approach.
For overlap, higher values indicate higher similarity
to the lists created by participants in our study. For
Kmin, lower values indicate higher similarity. EyeC

has the best performance for both metrics.

Figure 5: Boxplots comparing VSMdef with EyeC ,
the best performing configuration of our approach.
Each datapoint in each boxplot represents one Kmin

or Overlap value. That value is calculated between
two keyword lists: one generated by the given ap-
proach for a method, and one written by a partici-
pant in our study for the same method. The points
for Kmin for EyeC are concentrated at lower values,
and the points for Overlap at higher values, suggest-
ing better performance than VSMdef .

word lists returned by our approach more-closely matched
the order of the keyword lists written by programmers in
our study, than the order of the lists from VSMdef . Our
answer to RQ6 is that the best-performing approach, EyeC ,
improves over VSMdef by approximately 11% in terms of
Kmin (0.54− 0.43).

We observed a similar pattern in our analysis of RQ6 as for
RQ5. As Figure 4(b) illustrates, the Kmin values decrease
progressively for EyeA, EyeB , and EyeC . As the weights
increase for keywords in different areas of code, the order of
the keyword lists more-closely matches the order of the lists
written by programmers. In other words, the quality of the
keyword lists improves if those lists contain keywords from
some areas of code instead of others. Our approach empha-
sizes keywords from areas of code that programmers view as
important. This emphasis lead to a statistically-significant
improvement. EyeC had the most-aggressive set of weights
for keywords based on code area; it also experienced the
highest level of performance of any approach tested here.

9. DISCUSSION
Our paper advances the state-of-the-art in two key direc-

tions. First, we contribute to the program comprehension
literature with empirical evidence of programmer behavior
during source code summarization. We recorded the eye
movements of 10 professional programmers while they read
and summarized several Java methods from six different ap-
plications. We have made all raw and processed data avail-
able via an online appendix (see Section 4.2.7) to promote
independent research. At the same time, we have analyzed
these data and found that the programmers constantly pre-
ferred to read certain areas of code over others. We found
that control flow, which has been suggested as critical to
comprehension [16, 31], was not read as heavily as other code
areas during summarization. Method signatures and invo-
cations were focused on more-often. This finding seems to
confirm a recent study [45] that programmers avoid reading
code details whenever possible. In contrast, the program-
mers seek out high-level information by reading keywords
from areas that the programmers view as likely to contain
such information [58]. Our study sheds light on the viewing
patterns that programmers perform during summarization,
in addition to the areas of code they view.

Second, we show that the keywords that programmers
read are actually the keywords that an independent set of
programmers felt were important. Our eye-tracking study
provided evidence that programmers read certain areas of
code, but that evidence alone is not sufficient to conclude
that keywords from those areas should be included in source
code summaries – it is possible that the programmers read
those sections more often because they were harder to un-
derstand. The tool we presented in Section 6 is designed
to study this problem. It is based on a state-of-the-art ap-
proach [26] for extracting summary keywords from code, ex-
cept that our tool favors the keywords from the sections of
source code that programmers read during the eye-tracking
study. In an evaluation of this tool, we found that an in-
dependent set of programmers (e.g., not the same partici-
pants from the eye-tracking study) preferred the keywords
from our tool as compared to the state-of-the-art tool. This
finding confirms that the sections of code that programmers
read actually contain the keywords that should be included
in summaries.

An additional benefit of this work is the improvement of
existing source code summarization tools. While we have

Table 5: Statistical summary of the results for RQ5 and RQ6. Mann-Whitney test values are U , Uexpt, and
Uvari. Decision criteria are Z, Zcrit, and p. Testing procedure is identical to Table 1.

RQ Metric H Approach Samples x̃ µ Vari. T Texpt Tvari Z Zcrit p

RQ5 Overlap

H10
EyeA 170 0.800 0.719 0.030

6725 3698 234964 6.246 1.96 <1e-3
VSMdef 170 0.600 0.671 0.027

H11
EyeB 170 0.800 0.749 0.029

9092 5175 331605 6.802 1.96 <1e-3
VSMdef 170 0.600 0.671 0.027

H12
EyeC 170 0.800 0.761 0.033

9628 5727 360607 6.496 1.96 <1e-3
VSMdef 170 0.600 0.671 0.027

RQ6 Kmin

H13
EyeA 170 0.489 0.498 0.036

3519 6878 406567 -5.268 1.96 <1e-3
VSMdef 170 0.533 0.545 0.032

H14
EyeB 170 0.467 0.460 0.044

3028 7222 412696 -6.529 1.96 <1e-3
VSMdef 170 0.533 0.545 0.032

H15
EyeC 170 0.444 0.425 0.244

2971 7254 412950 -6.664 1.96 <1e-3
VSMdef 170 0.533 0.545 0.032

demonstrated one approach, progressive improvements to
other techniques may be possible based on this work. Differ-
ent source code summarization tools have generated natural
language summaries, instead of keyword lists [10, 39, 42, 54,
57]. These approaches have largely been built using assump-
tions about what programmers need in summaries, or from
program comprehension studies of tasks other than summa-
rization. Our work can assist code summarization research
by providing a guide to the sections of code that should be
targetted for summarization. At the same time, our work
may assist in creating metrics for source code comment qual-
ity [59] by providing evidence about which sections of the
code the comments should reflect.

Although this work contributes important evidence and
advances the state-of-the-art in source code summarization,
there are some limitations which we aim to address in fu-
ture work. Figure 5 shows a comparison between EyeC , the
best-performing configuration of our approach, and VSMdef .
The average values are improved for both Kmin and overlap,
but both our approach and VSMdef perform poorly on cer-
tain methods (visible as a substantial tail in the boxplots in
Figure 5). In a small number of cases, not a single keyword
selected by our approach or the default VSM tf/idf approach
matched a keyword selected by a programmer. An area of
future work is to study these methods to determine how our
approach might handle them differently.

Another area of future work is to expand the set of key-
words that our approach is able to extract. The evaluation of
our approach focused on the top-5 keywords extracted from
Java methods. The limit of 5 was selected due to practical
concerns (see Section 7.2). However, summaries may consist
of other words which support the meaning of the summary.
Natural language summaries, in particular, would include
numerous supporting words in complete sentences. It is an
area of future work to determine the appropriate strategies
for finding and organizing these words. It is important to
understand these strategies because the meaning of the key-
words extracted from the code may differ slightly (or be
modified) depending on the surrounding keywords.

10. CONCLUSION
We have presented an eye-tracking study of programmers

during source code summarization, a tool for selecting key-
words based on the findings of the eye-tracking study, and an
evaluation of that tool. We have explored six Research Ques-
tions aimed at understanding how programmers read, com-
prehend, and summarize source code. We showed how pro-
grammers read method signatures more-closely than method
invocations, and invocations more-closely than control flow.
These findings led us to design and build a tool for extract-
ing keywords from source code. Our tool outperformed a
state-of-the-art tool during a study with an independent set
of expert programmers. The superior performance of our
tool reinforces the results from our eye-tracking study: not
only did the programmers read keywords from some sections
of source code more-closely than others during summariza-
tion, but they also tended to use those keywords in their
own summaries.

Acknowledgments
We thank and acknowledge the 10 Research Programmers
at the Center for Research Computing at the University of
Notre Dame for participating in our eye-tracking study. We

also thank the nine graduate students and programmers who
participated in our follow-up study of our approach. The
fourth and fifth authors were supported by the National Sci-
ence Foundation (NSF) (HCC 0834847 and DRL 1235958).
Any opinions, findings and conclusions, or recommendations
expressed in this paper are those of the authors and do not
necessarily reflect the views of the NSF.

11. REFERENCES
[1] E. M. Altmann. Near-term memory in programming:

a simulation-based analysis. International Journal of
Human-Computer Studies, 54(2):189 – 210, 2001.

[2] K. Anjaneyulu and J. Anderson. The advantages of
data flow diagrams for beginning programming. In
C. Frasson, G. Gauthier, and G. McCalla, editors,
Intelligent Tutoring Systems, volume 608 of Lecture
Notes in Computer Science, pages 585–592. Springer
Berlin Heidelberg, 1992.

[3] J. Aponte and A. Marcus. Improving traceability link
recovery methods through software artifact
summarization. In Proceedings of the 6th International
Workshop on Traceability in Emerging Forms of
Software Engineering, TEFSE ’11, pages 46–49, New
York, NY, USA, 2011. ACM.

[4] M. S. Bansal and D. Fernández-Baca. Computing
distances between partial rankings. Inf. Process. Lett.,
109(4):238–241, Jan. 2009.

[5] R. Bednarik and M. Tukiainen. An eye-tracking
methodology for characterizing program
comprehension processes. In Proceedings of the 2006
symposium on Eye tracking research & applications,
ETRA ’06, pages 125–132, New York, NY, USA, 2006.
ACM.

[6] R. Bednarik and M. Tukiainen. Temporal eye-tracking
data: evolution of debugging strategies with multiple
representations. In Proceedings of the 2008 symposium
on Eye tracking research & applications, ETRA
’08, pages 99–102, New York, NY, USA, 2008.

[7] L. Bergman, V. Castelli, T. Lau, and D. Oblinger.
Docwizards: a system for authoring follow-me
documentation wizards. In Proceedings of the 18th
annual ACM symposium on User interface software
and technology, UIST ’05, pages 191–200, New York,
NY, USA, 2005. ACM.

[8] D. Binkley, M. Davis, D. Lawrie, J. I. Maletic,
C. Morrell, and B. Sharif. The impact of identifier
style on effort and comprehension. Empirical Softw.
Engg., 18(2):219–276, Apr. 2013.

[9] J. Brandt, M. Dontcheva, M. Weskamp, and S. R.
Klemmer. Example-centric programming: integrating
web search into the development environment. In
Proceedings of the 28th international conference on
Human factors in computing systems, CHI ’10, pages
513–522, New York, NY, USA, 2010. ACM.

[10] H. Burden and R. Heldal. Natural language generation
from class diagrams. In Proceedings of the 8th
International Workshop on Model-Driven Engineering,
Verification and Validation, MoDeVVa, pages 8:1–8:8,
New York, NY, USA, 2011. ACM.

[11] R. P. Buse and W. R. Weimer. Automatic
documentation inference for exceptions. In Proceedings
of the 2008 international symposium on Software

testing and analysis, ISSTA ’08, pages 273–282.

[12] R. P. Buse and W. R. Weimer. Automatically
documenting program changes. In Proceedings of the
IEEE/ACM international conference on Automated
software engineering, ASE ’10, pages 33–42.

[13] M. E. Crosby and J. Stelovsky. How do we read
algorithms? a case study. Computer, 23(1):24–35, Jan.

[14] J. W. Davison, D. M. Mancl, and W. F. Opdyke.
Understanding and addressing the essential costs of
evolving systems. Bell Labs Technical Journal, pages
44–54, 2000.

[15] S. C. B. de Souza, N. Anquetil, and K. M. de Oliveira.
A study of the documentation essential to software
maintenance. In Proceedings of the 23rd annual
international conference on Design of communication:
documenting & designing for pervasive information,
SIGDOC ’05, pages 68–75, New York, NY, USA, 2005.

[16] D. Dearman, A. Cox, and M. Fisher. Adding
control-flow to a visual data-flow representation. In
Proceedings of the 13th International Workshop on
Program Comprehension, IWPC ’05, pages 297–306,
Washington, DC, USA, 2005. IEEE Computer Society.

[17] C. Douce. Long term comprehension of software
systems: A methodology for study. Proc. Psychology
of Programming Interest Group, 2001.

[18] B. Eddy, J. Robinson, N. Kraft, and J. Carver.
Evaluating source code summarization techniques:
Replication and expansion. In Proceedings of the 21st
International Conference on Program Comprehension,
ICPC ’13, 2013.

[19] R. Fagin, R. Kumar, and D. Sivakumar. Comparing
top k lists. In Proceedings of the fourteenth annual
ACM-SIAM symposium on Discrete algorithms,
SODA ’03, pages 28–36, Philadelphia, PA, USA, 2003.
Society for Industrial and Applied Mathematics.

[20] R. K. Fjeldstad and W. T. Hamlen. Application
Program Maintenance Study: Report to Our
Respondents. In Proceedings GUIDE 48, Apr. 1983.

[21] B. Fluri, M. Wursch, and H. C. Gall. Do code and
comments co-evolve? on the relation between source
code and comment changes. In Proceedings of the 14th
Working Conference on Reverse Engineering, WCRE
’07, pages 70–79, Washington, DC, USA, 2007.

[22] A. Forward and T. C. Lethbridge. The relevance of
software documentation, tools and technologies: a
survey. In Proceedings of the 2002 ACM symposium on
Document engineering, DocEng ’02, pages 26–33, New
York, NY, USA, 2002. ACM.

[23] V. M. González and G. Mark. ”constant, constant,
multi-tasking craziness”: managing multiple working
spheres. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI ’04, pages
113–120, New York, NY, USA, 2004. ACM.

[24] A. Guzzi. Documenting and sharing knowledge about
code. In Proceedings of the 2012 International
Conference on Software Engineering, ICSE 2012, pages
1535–1538, Piscataway, NJ, USA, 2012. IEEE Press.

[25] G. Gweon, L. Bergman, V. Castelli, and R. K. E.
Bellamy. Evaluating an automated tool to assist
evolutionary document generation. In Proceedings of
the IEEE Symposium on Visual Languages and
Human-Centric Computing, VLHCC ’07, pages

243–248, Washington, DC, USA, 2007.

[26] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus. On
the use of automated text summarization techniques
for summarizing source code. In Proceedings of the
2010 17th Working Conference on Reverse
Engineering, WCRE ’10, pages 35–44, Washington,
DC, USA, 2010. IEEE Computer Society.

[27] R. Holmes and R. J. Walker. Systematizing pragmatic
software reuse. ACM Trans. Softw. Eng. Methodol.,
21(4):20:1–20:44, Feb. 2013.

[28] M. Kajko-Mattsson. A survey of documentation
practice within corrective maintenance. Empirical
Softw. Engg., 10(1):31–55, Jan. 2005.

[29] M. Kim, D. Notkin, D. Grossman, and G. Wilson.
Identifying and summarizing systematic code changes
via rule inference. IEEE Transactions on Software
Engineering, 39(1):45 –62, Jan. 2013.

[30] A. J. Ko and B. A. Myers. A framework and
methodology for studying the causes of software errors
in programming systems. Journal of Visual Languages
and Computing, 16(1âĂŞ2):41 – 84, 2005.

[31] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H.
Aung. An exploratory study of how developers seek,
relate, and collect relevant information during
software maintenance tasks. IEEE Trans. Softw. Eng.,
32(12):971–987, Dec. 2006.

[32] G. Kotonya, S. Lock, and J. Mariani. Opportunistic
reuse: Lessons from scrapheap software development.
In Proceedings of the 11th International Symposium on
Component-Based Software Engineering, CBSE ’08,
pages 302–309, Berlin, Heidelberg, 2008.

[33] D. Kramer. Api documentation from source code
comments: a case study of javadoc. In Proceedings of
the 17th annual international conference on Computer
documentation, SIGDOC ’99, pages 147–153, New
York, NY, USA, 1999. ACM.

[34] J.-P. Krämer, J. Kurz, T. Karrer, and J. Borchers.
Blaze. In Proceedings of the 2012 International
Conference on Software Engineering, ICSE 2012, pages
1457–1458, Piscataway, NJ, USA, 2012. IEEE Press.

[35] A. Lakhotia. Understanding someone else’s code:
analysis of experiences. J. Syst. Softw., 23(3):269–275.

[36] T. D. LaToza, G. Venolia, and R. DeLine. Maintaining
mental models: a study of developer work habits. In
Proceedings of the 28th international conference on
Software engineering, ICSE ’06, pages 492–501, New
York, NY, USA, 2006. ACM.

[37] T. Lethbridge, J. Singer, and A. Forward. How
software engineers use documentation: the state of the
practice. Software, IEEE, 20(6):35–39, 2003.

[38] D. C. Littman, J. Pinto, S. Letovsky, and E. Soloway.
Mental models and software maintenance. Journal of
Systems and Software, 7(4):341 – 355, 1987.

[39] S. Mani, R. Catherine, V. S. Sinha, and A. Dubey.
Ausum: approach for unsupervised bug report
summarization. In Proceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of
Software Engineering, FSE ’12, pages 11:1–11:11, New
York, NY, USA, 2012. ACM.

[40] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie,
and C. Fu. Portfolio: finding relevant functions and
their usage. In Proceedings of the 33rd International

Conference on Software Engineering, ICSE ’11, pages
111–120, New York, NY, USA, 2011. ACM.

[41] S. Mirghasemi, J. J. Barton, and C. Petitpierre.
Querypoint: moving backwards on wrong values in the
buggy execution. In Proceedings of the 19th ACM
SIGSOFT symposium and the 13th European
conference on Foundations of software engineering,
ESEC/FSE ’11, pages 436–439, New York, NY, USA.

[42] L. Moreno, J. Aponte, S. Giriprasad, A. Marcus,
L. Pollock, and K. Vijay-Shanker. Automatic
generation of natural language summaries for java
classes. In Proceedings of the 21st International
Conference on Program Comprehension, ICPC ’13.

[43] G. C. Murphy. Lightweight structural summarization
as an aid to software evolution. PhD thesis, University
of Washington, July 1996.

[44] K. Rayner, A. Pollatsek, and E. D. Reichle. Eye
movements in reading: Models and data. Behavioral
and Brain Sciences, 26:507–518, 7 2003.

[45] T. Roehm, R. Tiarks, R. Koschke, and W. Maalej.
How do professional developers comprehend software?
In Proceedings of the 2012 International Conference
on Software Engineering, ICSE 2012, pages 255–265.

[46] B. Sharif. Empirical assessment of uml class diagram
layouts based on architectural importance. In
Proceedings of the 2011 27th IEEE International
Conference on Software Maintenance, ICSM ’11, pages
544–549, Washington, DC, USA, 2011.

[47] B. Sharif, M. Falcone, and J. I. Maletic. An
eye-tracking study on the role of scan time in finding
source code defects. In Proceedings of the Symposium
on Eye Tracking Research and Applications, ETRA
’12, pages 381–384, New York, NY, USA, 2012. ACM.

[48] B. Sharif and J. I. Maletic. The effects of layout on
detecting the role of design patterns. In Proceedings of
the 2010 23rd IEEE Conference on Software
Engineering Education and Training, CSEET ’10,
pages 41–48, Washington, DC, USA, 2010.

[49] B. Sharif and J. I. Maletic. An eye tracking study on
camelcase and under score identifier styles. In
Proceedings of the 2010 IEEE 18th International
Conference on Program Comprehension, ICPC ’10,
pages 196–205, Washington, DC, USA, 2010.

[50] J. Sillito, G. C. Murphy, and K. De Volder. Asking
and answering questions during a programming
change task. IEEE Trans. Softw. Eng., 34(4):434–451.

[51] S. E. Sim, C. L. A. Clarke, and R. C. Holt. Archetypal
source code searches: A survey of software developers
and maintainers. In Proceedings of the 6th
International Workshop on Program Comprehension,
IWPC ’98, pages 180–, Washington, DC, USA, 1998.

[52] J. Singer, T. Lethbridge, N. Vinson, and N. Anquetil.
An examination of software engineering work
practices. In Proceedings of the 1997 conference of the
Centre for Advanced Studies on Collaborative research,
CASCON ’97, pages 21–. IBM Press, 1997.

[53] M. D. Smucker, J. Allan, and B. Carterette. A
comparison of statistical significance tests for
information retrieval evaluation. In CIKM, pages
623–632, 2007.

[54] G. Sridhara. Automatic Generation of Descriptive
Summary Comments for Methods in Object-oriented

Programs. PhD thesis, University of Delaware, Jan.

[55] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and
K. Vijay-Shanker. Towards automatically generating
summary comments for java methods. In Proceedings
of the IEEE/ACM international conference on
Automated software engineering, ASE ’10, pages
43–52, New York, NY, USA, 2010. ACM.

[56] G. Sridhara, L. Pollock, and K. Vijay-Shanker.
Automatically detecting and describing high level
actions within methods. In Proceedings of the 33rd
International Conference on Software Engineering,
ICSE ’11, pages 101–110, New York, NY, USA, 2011.

[57] G. Sridhara, L. Pollock, and K. Vijay-Shanker.
Generating parameter comments and integrating with
method summaries. In Proceedings of the 2011 IEEE
19th International Conference on Program
Comprehension, ICPC ’11, pages 71–80, Washington,
DC, USA, 2011. IEEE Computer Society.

[58] J. Starke, C. Luce, and J. Sillito. Searching and
skimming: An exploratory study. In Software
Maintenance, 2009. ICSM 2009. IEEE International
Conference on, pages 157–166, 2009.

[59] D. Steidl, B. Hummel, and E. Juergens. Quality
analysis of source code comments. In Proceedings of
the 21st International Conference on Program
Comprehension, ICPC ’13, 2013.

[60] J. Stylos and B. A. Myers. Mica: A web-search tool for
finding api components and examples. In Proceedings
of the Visual Languages and Human-Centric
Computing, VLHCC ’06, pages 195–202, Washington,
DC, USA, 2006. IEEE Computer Society.

[61] H. Uwano, M. Nakamura, A. Monden, and K.-i.
Matsumoto. Analyzing individual performance of
source code review using reviewers’ eye movement. In
Proceedings of the 2006 symposium on Eye tracking
research & applications, ETRA ’06, pages 133–140,
New York, NY, USA, 2006. ACM.

[62] D. A. Wolfe and M. Hollander. Nonparametric
statistical methods. Nonparametric statistical methods.

[63] A. T. T. Ying and M. P. Robillard. Code fragment
summarization. In Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering,
ESEC/FSE 2013, pages 655–658, New York, NY,
USA, 2013. ACM.

[64] S. Zhang, C. Zhang, and M. D. Ernst. Automated
documentation inference to explain failed tests. In
Proceedings of the 2011 26th IEEE/ACM
International Conference on Automated Software
Engineering, ASE ’11, pages 63–72, Washington, DC,
USA, 2011. IEEE Computer Society.

