1038

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41,

NO. 11, NOVEMBER 2015

An Eye-Tracking Study of Java Programmers
and Application to Source Code Summarization

Paige Rodeghero, Cheng Liu, Paul W. McBurney, and Collin McMillan, Member, IEEE

Abstract—Source Code Summarization is an emerging technology for automatically generating brief descriptions of code. Current
summarization techniques work by selecting a subset of the statements and keywords from the code, and then including information
from those statements and keywords in the summary. The quality of the summary depends heavily on the process of selecting the
subset: a high-quality selection would contain the same statements and keywords that a programmer would choose. Unfortunately,
little evidence exists about the statements and keywords that programmers view as important when they summarize source code. In
this paper, we present an eye-tracking study of 10 professional Java programmers in which the programmers read Java methods and
wrote English summaries of those methods. We apply the findings to build a novel summarization tool. Then, we evaluate this tool.
Finally, we further analyze the programmers’ method summaries to explore specific keyword usage and provide evidence to support

the development of source code summarization systems.

Index Terms—Source code summaries, program comprehension

1 INTRODUCTION

PROGRAMMERS spend a large proportion of their time
reading and navigating source code in order to compre-
hend it [1], [2], [3]. However, studies of program compre-
hension consistently find that programmers would prefer to
focus on small sections of code during software mainte-
nance [1], [3], [4], [5], and “try to avoid” [6] comprehending
the entire system. The result is that programmers skim
source code (e.g., read only method signatures or important
keywords) to save time [7]. Skimming is valuable because it
helps programmers quickly understand the underlying
code, but the drawback is that the knowledge gained cannot
easily be made available to other programmers.

An alternative to skimming code is to read a summary of
the code. A summary consists of a few keywords, or a brief
sentence, that highlight the most-important functionality of
the code, for example “record wav files” or “xml data
parsing.” Summaries are typically written by programmers,
such as in leading method comments for JavaDocs [8].
These summaries are popular, but have a tendency to be
incomplete [9], [10] or outdated as code changes [11], [12].

As a result, automated source code summarization tools
are emerging as viable techniques for generating summaries
without human intervention [13], [14], [15], [16], [17], [18].
These approaches follow a common strategy: 1) choose a
subset of keywords or statements from the code, and 2) build
a summary from this subset. For example, Haiduc et al.
described an approach based on automated text summariza-
tion using a vector space model (VSM) [19]. This approach

o The authors are with the Department of Computer Science and Engineer-
ing, University of Notre Dame, Notre Dame, IN 46556.
E-mail: {prodeghe, cliu7, pmcburne, cmc)@nd.edu.

Manuscript received 19 June 2014; revised 28 Feb. 2015; accepted 1 May 2015.
Date of publication 4 June 2015; date of current version 13 Nov. 2015.
Recommended for acceptance by G.C. Murphy.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TSE.2015.2442238

selects the top-n keywords from Java methods according to
a term frequency [inverse document frequency (tffidf) formula.
Taking a somewhat different approach, Sridhara et al.
designed heuristics to choose statements from Java methods,
and then used keywords from those statements to create a
summary using sentence templates [20].

In this paper, we focus on improving the process of
selecting the subset of keywords for summaries. The long-
term goal is to have the automated selection process choose
the same keywords that a programmer would when writing
a summary. Future research in automated summarization
could then be dedicated to the summary building phase.

Our contribution is four-fold. First, we conduct an eye-
tracking study of 10 professional Java programmers. During
the study, the programmers read Java methods and wrote
summaries for those methods. In order to replicate our ideal
problem situation, we specifically chose methods that were
absolutely uncommented and seemingly isolated, as in
many open source projects. Second, we analyzed eye move-
ments and gaze fixations of the programmers to identify
common keywords the programmers focused on when
reviewing the code and writing the summaries. This analy-
sis led us to different observations about the types of key-
words programmers tended to view. We realized these
observations were not sufficient enough to prove that only
those types of keywords should be included in method
summaries. We then designed a small tool that selects key-
words from Java methods. Third, we compared the key-
word selections from our tool to the keywords selected
using a state-of-the-art approach [19]. We found that our
tool improved over the state-of-the-art when compared to
keyword lists written by human evaluators, showing that
the conclusions we made from the eye-tracking results hold
credibility. Last, we explore the professional programmers’
method summaries to discover how the keywords being
focused on in code are actually being used during summari-
zation. We discovered that the keywords are being

0098-5589 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

RODEGHERO ET AL.: AN EYE-TRACKING STUDY OF JAVA PROGRAMMERS AND APPLICATION TO SOURCE CODE SUMMARIZATION

indirectly used in summaries through the use of English
phrases that contain pieces of the original keyword.

2 THE PROBLEM

We address the following gap in the current program com-
prehension literature: there are no studies of how pro-
grammers read and understand source code specifically for
the purpose of summarizing that source code. This gap
presents a significant problem for designers of automated
source code summarization tools. Without studies to pro-
vide evidence about the information that programmers use
to create summaries, these designers must rely on intuitions
and assumptions about what should be included in a sum-
mary. In one solution, Haiduc et al. proposed to adapt ideas
from text summarization, and developed a tool that creates
summaries by treating source code as blocks of natural lan-
guage text [19]. Moreno et al. [15] and Eddy et al. [21] have
built on this approach and verified that it can extract key-
words relevant to the source code being summarized. Still,
a consistent theme across all three of these studies is that
different terms are relevant for different reasons, and that
additional studies are necessary to understand what pro-
grammers prioritize when summarizing code.

Another strategy to creating summaries is to describe a
high-level behavior of the code. The goal is to connect the
summary to a feature or concept which a programmer would
recognize. For example, Sridhara et al. create summaries by
matching known patterns of features to Java methods [22]. In
prior work, they had identified different heuristics for state-
ments within Java methods, to describe the key functionality
of these methods [20]. While these approaches are effective
for certain types of methods or statements, they still rely on
assumptions about what details the programmers need to see
in the summaries. In both of these works, a significant focus
was placed on evaluating the conciseness of the summaries—
that is, whether the generated summaries described the
appropriate information. Hence, in our view, existing sum-
marization tools could be improved if there were more basic
data about how programmers summarize code.

3 RELATED WORK

This section will cover related work on program compre-
hension and eye-tracking studies in software engineering,
as well as source code summarization techniques.

3.1 Studies of Program Comprehension

There is a rich body of studies on program comprehension.
Ko et al. and Holmes and Walker have observed that many
of these studies target the strategies followed by pro-
grammers and the knowledge that they seek [2], [23]. For
example, during maintenance tasks, some programmers fol-
low a “systemic” strategy aimed at understanding how dif-
ferent parts of the code interact [24], [25]. In contrast, an
“opportunistic” strategy aims to find only the section of
code that is needed for a particular change [4], [26], [27],
[28]. In either strategy, studies suggest that programmers
form a mental model of the software [1], specifically includ-
ing the relationships between different sections of source
code [12], [29], [30], [31]. Documentation and note-taking is

1039

widely viewed as important because programmers tend to
forget the knowledge they have gained about the software
[32], [33]. At the same time, programmers are often inter-
rupted with requests for help with understanding source
code [34], and written notes assist developers in answering
these questions [35].

Different studies have analyzed how programmers use
the documentation and notes. One recent study found that
programmers prefer face-to-face communication, but turn to
documentation when it is not available [6]. The same study
found that programmers read source code only as a last
resort. The study confirms previous findings that, while
reading source code is considered a reliable way of under-
standing a program, the effort required is often too high [7],
[36]. These studies provide a strong motivation for auto-
mated summarization tools, but few clues about what the
summaries should contain. Some studies recommend an
incremental approach, such that documentation is updated
as problems are found [37], [38]. Stylos and Myers recom-
mend highlighting summaries of code with references to
dependent source code [39]. These recommendations corrob-
orate work by Lethbridge et al. that found that documenta-
tion should provide a high-level understanding of source
code [40]. Taken together, these studies point to the type of
information that should be in code summaries, but not to the
details in the code which would convey this information.

3.2 Eye-Tracking in Software Engineering

Eye-tracking technology has been used in only a few studies
in software engineering. Crosby and Stelovsky performed
one early study, and concluded that the process of reading
source code is different from the process of reading prose
[41]. Programmers alternate between comments and source
code, and fixate on important sections, rather than read the
entire document at a steady pace [41]. Despite this difference,
Uwano et al. found that the more time programmers take to
scan source code before fixating on a particular section, the
more likely they are to locate bugs in that code [42]. In two
separate studies Bednarik and Tukiainen found that repeti-
tively fixating on the same sections is a sign of low program-
ming experience, while experienced programmers target the
output of the code, such as evaluation expressions [43], [44].
In a study on requirements traceability, Ali et al. use eye track-
ing data to inform them on how developers’ verify RT links.
They then created a novel technique, similar to ours, to
improve on the current tf / idf technique used in this area [45].
In this paper, we suggest that summaries should include the
information from the areas of code on which programmers
typically fixate. These previous eye-tracking studies suggest
that the summaries may be especially helpful for novice pro-
grammers. Moreover, several of these findings have been
independently verified. For example, Sharif et al. confirm that
scan time and bug detection time are correlated [46]. Eye-
tracking has been used in studies of identifier style [47], [48]
and UML diagram layout [49], [50], showing reduced com-
prehension when the code is not in an understandable format.

3.3 Source Code Summarization

The findings in this paper can benefit several summariza-
tion tools. Some work has summarized software by showing
connections between high- and low-level artifacts, but did

1040

not produce natural language descriptions [51]. Work that
creates these descriptions includes work by Sridhara et al.
[17], [20], Haiduc et al. [19], and Moreno et al. [15] as men-
tioned above. Earlier work includes approaches to explain
failed tests [52], Java exceptions [53], change log messages
[54], and systemic software evolution [55]. Studies of these
techniques have shown that summarization is effective in
comprehension [21] and traceability link recovery [56]. Nev-
ertheless, no consensus has developed around what charac-
terizes a “high quality” summary or what information
should be included in these summaries.

3.4 Vector Space Model Summarization

One state-of-the-art technique for selecting keywords from
source code for summarization is described by Haiduc et al..
Their approach selects keywords using a vector space model,
which is a classic natural language understanding technique
[19]. A VSM is a mathematical representation of text in which
the text is modeled as a set of documents containing terms. For
source code, Haiduc et al. treat methods as documents and
keyword tokens (e.g., variable names, functions, and data-
types) as terms. Then the code is represented as a large vector
space, in which each method is a vector. Each term is a poten-
tial direction along which the vectors may have a magnitude.
If a term appears in a method, the magnitude of the vector
along the “direction” of that term is assigned a non-zero
value. For example, this magnitude may be the number of
occurrences of a keyword in a method, or weighted based on
where the keyword occurs in the method.

Haiduc et al. assign these magnitude values using a term
frequency [inverse document frequency (tf/idf) metric. This met-
ric ranks the keywords in a method body based on how spe-
cific those keywords are to that method. Tf/idf gives higher
scores to keywords which are common within a particular
method body, but otherwise rare throughout the rest of the
source code. In the approach by Haiduc et al., the summary
of each method consists of the top-n keywords based on
these fffidf scores. An independent study carried out by
Eddy et al. has confirmed that these keywords can form an
accurate summary of Java methods [21]. See Section 6.3 for
an example of the output from this approach.

4 EYE-TRACKING STuDY DESIGN

This section describes our research questions (RQ), the
methodology of our eye-tracking study, and details of the
environment for the study.

4.1 Research Questions

The long-term goal of this study is to discover what key-
words from source code should be included in the summary
of that code. Towards this goal, we highlight four areas of
code that previous studies have suggested as being useful
for deriving keywords. We study these areas in the four
research questions that we pose:

R@1 To what degree do programmers focus on the key-
words that the VSM tf/idf technique [19], [21] extracts?
RQ> Do programmers focus on a method’s signature more

than the method’s body?

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41,

NO. 11, NOVEMBER 2015

public void comit() |
Proparties properties =
Iteratortijects it = properties.keySet (). iterator()s
wnile (it.namwextO) {
String skey = (String) it.nexti)s
A€ [sKey.startswith[Const.AMNIENCE_FREFIX)) |

Cont.gutProperties ():

it remove (}3

; A v ey i 0
e e e e

genras. append [gunre. get1D0)) . appand(®, ') :
i
Cont, setProparty [Const AMNIENCE_FREFTX +

asbionce.gutiD() + */* 4+ ssbience.getasa(),

genres. tostring () . substring (0, genres.lengthi) - 11):

Fig. 1. Interface of the eye-tracking device.

RQs; Do programmers focus on a method’s control flow
more than the method’s other areas?
RQs Do programmers focus on a method’s invocations

more than the method’s other areas?

The rationale behind R, is that two independent stud-
ies have confirmed that a VSM ff/idf approach to extracting
keywords outperforms different alternatives [19], [21]. If
programmers tend to read these words more than others, it
would provide key evidence that the approach simulates
how programmers summarize code. Similarly, both of these
studies found that in select cases, a “lead” approach outper-
formed the VSM approach. The lead approach returns key-
words from the method’s signature. Therefore, in RQ), we
study the degree to which programmers emphasize these
signature terms when reading code. We pose RQ; in light
of related work which suggests that programmers compre-
hend code by comprehending its control flow [2], [57], while
contradictory evidence suggests that other regions may be
more valuable [58]. We study the degree to which pro-
grammers focus on control flow when summarizing code,
to provide guidance on how it should be prioritized in sum-
maries. Finally, the rationale behind R(Q), is that method
invocations are repeatedly suggested as key elements in
program comprehension [2], [12], [39], [59]. Keywords from
method calls may be useful in summaries if programmers
focusing on them when summarizing code.

4.2 Methodology

We designed a research methodology based on the related
studies of eye-tracking in program comprehension (see
Section 3.2). Participants were individually tested in a one
hour session consisting of reading, comprehending, and
summarizing Java methods. Methods were presented one at
a time and eye gaze was captured with a commercial eye-
tracker. Fig. 1 shows the system interface. The method was
shown on the left, and the participant was free to spend as
much time as he or she desired to read and understand the
method. The method itself was in 10pt Lucida Console font,
was not editable, and had no syntax highlighting. The par-
ticipant would then write a summary of the method in the
text box on the top-right. The bottom-right box was an
optional field for comments. The participant clicked on the
button to the bottom-right to move to the next method.

4.2.1 Data Collection

The eye-tracker logged the time and location (on the screen)
of the participants’ eye gaze. The interface also logged the

RODEGHERO ET AL.: AN EYE-TRACKING STUDY OF JAVA PROGRAMMERS AND APPLICATION TO SOURCE CODE SUMMARIZATION

methods and keywords displayed at these locations. We
define “keywords” in our study to include Java-specific key-
words, as well as developer-created identifiers, which can
contain several sub-words. We do not include any punctua-
tion or operators in our definition of keywords. From these
logs, we mapped each keyword to its position and calculated
three types of eye-movement behavior to answer our
research questions: gaze time, fixations, and regressions. We
define gaze time as the total number of milliseconds spent on
a region of interest (ROl-e.g., a method, a keyword). We
define fixations as any locations that a participant viewed for
more than 100 milliseconds. We define regressions as loca-
tions that the participant read once, then read again after
reading other locations. To be more precise, the number of
regressions on a keyword is one less than the total number of
fixations on that keyword during a single reading. These
three types of eye movements are widely used in the eye-
tracking literature [41], [42], [60]. Taken together, they pro-
vide a model for understanding how the participants read
different sections of the source code. Section 5 details how
we use these data to answer each of our research questions.

4.2.2 Subject Applications

We selected a total of 67 Java methods from six different
applications: NanoXML, Siena, JTopas, Jajuk, JEdit, and
JHotdraw. These applications were all open-source and var-
ied in domain, including XML parsing, text editing, and
multimedia. The applications ranged in size from 5 to 117
KLOC and 318 to 7,161 methods. We randomly selected a
total of 67 methods from these applications. While the selec-
tion was random, we filtered the methods based on two cri-
teria. First, we removed trivial methods, such as get, set, and
empty methods. Second, we removed methods greater than
22 LOC because they could not be displayed on the eye
tracking screen without scrolling, which creates complica-
tions in interpreting eye movement (see Section 4.2.6).
Methods were presented to the participants in a random
order. However, to ensure some overlap for comparison,
we showed all participants the five largest methods first.
These methods were always shown in the same order.

4.2.3 Patrticipants

We recruited 10 programmers to participate in our study.
These programmers were employees of the center for
research computing (CRC) at the University of Notre Dame.
Note that developers at the CRC are not students, they are
professional programmers engaged in projects for different
departments at Notre Dame. Their overall programming
experience ranged from 6 to 27 years, averaging 13.3 years.
Each programmer had some recent experience with Java
programming, with three of them currently working on
projects that required daily Java use. Their specific overall
Java experience ranged from 1 to 6 years, averaging 1.8
years. We also made sure that each participant had no detri-
mental eye impairments and were native English speakers.

4.2.4 Statistical Tests

We compared gaze time, fixation, and regression counts
using the Wilcoxon signed-rank test [61]. This test is non-

1041

parametric and paired, and does not assume a normal
distribution. It is suitable for our study because we com-
pare the gaze times for different parts of methods (paired
for each method) and because our data may not be nor-
mally distributed.

4.2.5 Equipment

We used a Tobii TX300 Eye-Tracker device for our study.
The device has a resolution of 1,920 x 1,080 and a 300 Hz
sampling rate. The monitor uses a 24” widescreen display
with a DPI setting of 96. A technician was available at all
times to monitor the equipment. The sampling rate was
lowered to 120 Hz to reduce computational load; such a
sample rate is acceptable for simple ROI analyses like the
ones conducted here. The tool used to capture the eye gazes
was OGAMA.!

4.2.6 Threats to Validity

Our methodology avoids different biases and technical
limitations. We assume that all participants write compara-
ble summaries for Java methods in order to reduce the
need to filter certain summaries out. We also made
the assumptions that the summaries written were accept-
able summaries for the given methods. We realize that
these aspects are not completely realistic, but we believe
the risk is minimized since all participants were professio-
nals. We showed the method as black-on-beige text to pre-
vent potential bias from syntax highlighting preferences
and distractions. However, this may introduce a bias if the
programmers read the code outside of a familiar environ-
ment, such as an IDE. The isolated form of summarization
(i.e., the inability to look at other related methods at the
same time) may have reduced bias, as we intended, but
may have also caused the summarization process to be dif-
ferent than normal for certain participants. To avoid
fatigue effects, we ended the study after one hour, regard-
less of the number of methods summarized. The text boxes
were shown on screen, rather than collected on paper,
because of eye tracking complications, such as losing track
of the eyes or ruining calibration, when the participant
repeatedly looks away from the screen. We also realize that
this means that the programmer could continue scanning
the method while typing the summary, which could have
an unknown affect compared to forcing the creation of a
hand-written copy. We were also limited in the size of the
Java methods: the interface did not support scrolling or
navigation, and accuracy decreases as the font becomes
smaller. We now know of an environment created to cor-
rect this problem [62], but this environment was unavail-
able to us at the time of the study. These limitations forced
us to choose methods which were at most 22 lines long and
93 characters across. Therefore, we cannot claim that our
results are generalizable to methods of an arbitrary size.
We defined keywords to be of any length. We realize that
there have been studies [63] showing that identifier length
can affect the view of the identifier and, therefore, could
change our results; however, we feel that adding this level
of complexity to our study is not needed at this time.

1. http:/ /www.ogama.net/

1042
1 1
—l— n.g
0.8
0.6
- 0.4
- 0.2
1]
0.z
*:L -0.2
1] -0.4
Top 5 Top 10 Total
Civerlap Cwerlap Caorrelation

Fig. 2. Data for RQ,. Plots to the left show percentage overlap of VSM
tf/idf top keywords to the top most-read keywords in terms of gaze time.
Plot to the right shows Pearson correlation between VSM tf/idf values and
gaze time for all keywords. The white line is the mean. The black box is
the lower quartile and the gray box is the upper quartile. The thin line
extends from the minimum to the maximum value, excluding outliers.

4.2.7 Reproducibility

For the purposes of reproducibility and independent study,
we have made all data available via an online appendix:
http:/ /www3.nd.edu/~prodeghe/projects/eyesum/

5 EYE-TRACKING STUDY RESULTS

In this section, we present our answer to each research ques-
tion, as well as our data, rationale, and interpretation of the
answers. These answers are the basis for the keyword selec-
tion approach we present in Section 6.

5.1 RQ;: VSM tf/idf Comparison

We found evidence that the VSM tf/idf approach extracts a
list of keywords that approximates the list of keywords that
programmers read during summarization. Two types of
data supporting this finding are shown in Fig. 2. First, we
calculated the overlap between the top keywords from the
VSM approach and the top keywords that programmers
read during the study according to gaze time. For example,
for the method getLongestMatch, programmers gaze
time was highest for the keywords currentMatch, iter,
currentMax, getLongestMatch, and hasNext. Ideal
overalp would result in 100 percent. The overlap for the top
five was 60 percent because VSM approach returned
currentMatch, retprop, currentmax, iter, and len.
Second, we computed the Pearson correlation between the
gaze time and the VSM tf/idf values for the keywords in all
methods. Full data for these calculations is available via our
online appendix.

On average, five of the top 10 keywords selected by the
VSM tffidf approach overlapped with the top 10 keywords
that programmers read during the study. Similarly, between
two and three of the top five keywords overlapped. The

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41,

NO. 11, NOVEMBER 2015
correlation between the gaze time and VSM value was 0.35 on
average, but varied between —0.28 and 0.94. The correlation
was negative for only seven of 67 methods. These results
indicate that when the VSM tf/idf value for a keyword is high,
the gaze time for that keyword is also likely to be high. But,
only about half of the keywords in a method’s top five or
10 list from VSM are likely to match the keywords
that programmers read and view as important. While the
VSM tffidf approach selects many appropriate keywords from
a method, further improvements are necessary to choose the
keywords that programmers read while summarizing code.

5.2 RQ,: Method Signatures
We found statistically-significant evidence that, during
summarization, programmers read a method’s signature
more-heavily than the method’s body. The programmers
read the signatures in a greater proportion than the
signatures’ sizes. On average, the programmers spent
18 percent of their gaze time reading signatures, even
though the signatures only averaged 12 percent of the meth-
ods. The pattern suggested by this average is consistent
across the different methods and participants in our study.
The following describes the procedure we followed to
draw this conclusion: Consider the statistical data in Table 1.
We compared the adjusted gaze time, fixation, and regres-
sion count for the keywords in the signatures to the key-
words in the method bodies. To compute the gaze time
percentage, we calculated the amount of time that the pro-
grammer spent reading the signature keywords for a given
method. Then we adjusted that percentage based on the
size of the signature. For example, if a programmer spent
30 percent of his or her time reading a method’s signature,
and the signature contains 3 of the 20 keywords (15 percent)
in a method, then the adjusted gaze time metric would be
30/15 = 2. For the fixation and regression metrics, we com-
puted the percentage of fixations on and regressions to the
signature or body, and adjusted these values for size in the
same manner as gaze time. We then posed three hypotheses
(H;, H, and H3) as follows:

H, The difference between the adjusted [gaze time / fixa-
tion / regression] metric for method signatures and
method bodies is not statistically-significant.

We tested these hypotheses using a Wilcoxon test (see
Section 4.2.4). We reject a hypothesis only when |Z| is greater
than Z,,;; for a p is less than 0.05. For RQ,, we rejected two of
these three null hypotheses (4, and H; in Table 1). This indi-
cates that the programmers spent more gaze time, and fix-
ated more often on, the method signatures than the method
bodies, when adjusted for the size of the signatures. We did
not find a statistical difference in the regression time, indicat-
ing that the programmers did not re-read the signatures
more than the methods’ body keywords.

5.3 RQjs: Control Flow

We found statistically significant evidence that programmers
tended to read control flow keywords less than the keywords
from other parts of the method. On average, programmers
spent 31 percent of their time reading control flow keywords,
even though these keywords averaged 37 percent of the key-
words in the methods. To determine the significance of the

RODEGHERO ET AL.: AN EYE-TRACKING STUDY OF JAVA PROGRAMMERS AND APPLICATION TO SOURCE CODE SUMMARIZATION 1043
TABLE 1
Statistical Summary of the Results for RQ,, RQ3, and RQ,

RQ H Metric Method Area Samples T “w Vari. U Uecapt Upari Z Z it P

H; Gaze Signature 95 1.061 1784 4.237 2,808 2,280 72,580 1.96 1.65 0.025
Non-Sig. 95 0.996 0933 0.054

RQ» H, Fixation Signature 95 1.150 1.834 4451 3,008 2,280 72,5580 2.70 1.65 0.003
Non-Sig. 95 0.984 0926 0.050

H; Regress. Signature 95 0.830 1.436 3.607 2,307 2,280 72,580 0.10 1.65 0.459
Non-Sig. 95 1.014 0978 0.032

Hy Gaze Ctrl. Flow 111 0781 0924 0392 1,95 3,108 115514 -3.389 196 0.001
Non-Ctrl. 111 1.116 1.134 0.145

RQ; Hs Fixation Ctrl. Flow 111 0.834 0938 0274 2,140 3,108 115514 -2.848 1.96 0.004
Non-Ctrl. 111 1.071 1.122 0.130

Hg Regress. Ctrl. Flow 111 0.684 0.813 0269 1463 3,108 115514 -4.840 1.96 <le-3
Non-Ctrl. 111 1.132 1.199 0.165

H; Gaze Invocations 106 0968 1.069 0778 2,586 2,836 100,660 -0.786 1.96 0.432
Non-Invc. 106 1.021 1.027 0.086

RQs Hy Fixation Invocations 106 1.003 1.048 0.385 2,720 2,835 100,660 -0.364 1.96 0.716
Non-Invc. 106 0.998 1.020 0.064

Hy Regress. Invocations 106 1.028 1.045 0.065 2,391 2,835 100,660 -1.399 1.96 0.162
Non-Invc. 106 1.028 1.045 0.065

Wilcoxon test values are U, Uy, and U,y Decision criteria are Z, Z.,i,, and p. A “Sample” is one programmer for one method.

results, we followed the same procedure outlined in
Section 5.2: we computed the adjusted gaze time, fixation,
and regression count for the control flow keywords versus
all other keywords. A “control flow” keyword included any
keyword inside of a control flow statement. For example, for
the line if (area < maxArea), the control flow keywords
are “area” and “maxArea.” We then posed Hy, Hs, and Hg:

H, The difference between the adjusted [gaze time / fixa-
tion / regression] metric for control flow keywords
and all other keywords is not statistically-significant.

Using the Wilcoxon test, we rejected all three null

hypotheses (see RQj3 in Table 1). These results indicate that

the programmers did not read the control flow keywords as

heavily as other keywords in the code.

5.4 RQy: Method Invocations

We found no evidence that programmers read keywords
from method invocations more than keywords from other
parts of the methods. Programmers read the invocations in
the same proportion as they occurred in the methods. We
defined invocation keywords as the keywords from the
invoked method’s name and parameters. For example, for
thelinedouble ca =getArea(circle, 3), theinvocation
keywords would be “getarea” and “circle,” but not “double”
or “ca.” We then posed three hypotheses (Hs, Hg, and Hy):

H, The difference between the adjusted [gaze time / fixa-
tion / regression] metric for invocation keywords and
all other keywords is not statistically-significant.

As shown in Table 1, the Wilcoxon test results were not

conclusive for RQ,. These results indicate that the pro-

grammers read the invocations in approximately the same

proportion as other keywords.

5.5 Summary of the Eye-Tracking Results

We derive two main interpretations of our eye-tracking
study results. First, the VSM {f/idf approach roughly

approximates the list of keywords that programmers read
during summarization, with about half of the top 10
keywords from VSM matching those most-read by pro-
grammers. Second, programmers prioritize method signa-
tures above invocation keywords, and invocation keywords
above control flow keywords. We base our interpretation on
the finding that signature keywords were read more than
other keywords, invocations were read about the same, and
control flow keywords were read less than other keywords.
In addition, the adjusted gaze time for method signatures
(H,) averaged 1.784, versus 1.069 for invocations (H;) and
0.924 for control flow (Hy). An adjusted value of 1.0 for an
area of code means that the programmers read that area’s
keywords in a proportion equal to the proportion of key-
words in the method that were in that area. In our study,
the adjusted gaze times were greater than 1.0 for signatures
and invocations, but not for control flow keywords. Our
conclusion is that the programmers needed the control flow
keywords less for summarization than the invocations, and
the invocations less than the signature keywords.

6 OUR APPROACH

In this section, we describe our approach for extracting key-
words for summarization. Generally speaking, we improve
the VSM tffidf approach we studied in RQ,; using the eye-
tracking results from answering RQ,, RQ3, and RQj.

6.1 Keyldea

The key idea behind our approach is to modify the
weights we assign to different keywords, based on how
programmers read those keywords. In the VSM tf/idf
approach, all occurrences of terms are treated equally: the
term frequency is the count of the number of occurrences
of that term in a method (see Section 3.4). In our
approach, we weight the terms based on where they
occur. Specifically, in light of our eye-tracking results, we
weight keywords differently if they occur in method sig-
natures, control flow, or invocations.

1044

TABLE 2
The Weight Given to Terms Based on the Area of Code
Where the Term Occurs

Code Area VSM,e s Eyey Eyep Eyec
Method Signature 1.0 1.8 2.6 42
Method Invocation 1.0 1.1 1.2 14
Control Flow 1.0 0.9 0.8 0.6
All Other Areas 1.0 1.0 1.0 1.0

6.2 Extracting Keywords
Table 2 shows four different sets of weights. Each set corre-
sponds to different counts for keywords from each code
area. For the default VSM approach [19], denoted VSMy,y,
all occurrences of terms are weighted equally. In one config-
uration of our approach, labeled Eye,, keywords from the
signature are counted as 1.8 occurrences, a keyword is
counted as 1.1 if it occurs in the method invocation, and 0.9
if in a control flow statement. Because we wanted to label
each keyword with only one section, if a keyword occurs in
both a control flow and invocation area, we count it as only
in control flow. These weights correspond to the different
weights we found for these areas in the eye-tracking study
(see Section 5.5). Eyep and Eyer work similarly, except with
progressively magnified differences in the weights

These changes in the weights mean that keywords
appearing in certain code areas are inflated, allowing those
keywords to be weighted higher than other keywords with
the same number of occurrences, but in less important
areas. After creating the vector space for these methods and
keywords, we score each method’s keywords using ff/idf,
where term frequency of each term is defined by its own
weighted score, rather than the raw number of occurrences.

6.3 Example

In this section, we give an example of the keywords that our
approach and the default VSM tffidf approach generate
using the source code in Fig. 3. In this example, where VSM
tf/idf increments each weight a fixed amount of each occur-
rence of a term, we increment by our modified weights
depending on contextual information. Consider the key-
word list below:

Keywords Extracted by Default VSM Approach
“textarray, text, match, offset, touppercase”

The term “textArray” occurs in 2 of 6,902 different meth-
ods in the project. But it occurs twice in regionMatches (),
and therefore the default VSM tf/idf approach places it at the
top of the list. Likewise, “text” occurs in 125 different meth-
ods, but four times in this method. But other keywords, such
as “ignoreCase”, which occur in the signature and control
flow areas, may provide better clues about the method than
general terms such as “text”, even though the general terms
appear often. Consider the list below:

Keywords Extracted by Our Approach
“match, regionmatches, text, ignorecase, offset”

The term “match” is ranked at the top of the list in
our approach, moving from position three in the
default approach. Two keywords, “regionMatches” and
“ignoreCase”, that appear in our list do not appear in

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41,

NO. 11, NOVEMBER 2015

public static boolean regionMatches (boolean ignoreCase,
Segment text, int offset, char[] match) ({
int length = offset + match.length;
if (length > text.offset + text.count)
return false;
char[] textArray = text.array;
for(int i = offset, j = 0; i < length; i++, J++)
{
char cl = textArrayl[i];
char c2 = match[j];
if (ignoreCase)
{
cl
c2

Character.toUpperCase(cl);
Character.toUpperCase (c2) ;

}
if(cl != c2)
return false;
}
return true;

}

Fig. 3. Source code for example.

the list from the default approach. By contrast, the previ-
ous approach favors “toUpperCase” over “ignoreCase”
because “toUpperCase” occurs in 22 methods, even
though both occur twice in this method. These differen-
ces are important because it allows our approach to
return terms which programmers are likely to read
(according to our eye-tracking study), even if those terms
may occur slightly more often across all methods.

7 EVALUATION OF OUR APPROACH

This evaluation compares the keyword lists extracted by our
approach to the keyword lists extracted by the state-of-the-
art VSM tf/idf approach [19]. In this section, we describe the
user study we conducted, including our methodology,
research subjects, and evaluation metrics.

7.1 Research Questions

Our objective is to determine the degree to which our
approach and the state-of-the-art approach approximate the
list of keywords that human experts would choose for sum-
marization. Hence, we pose the following two questions:

RQs To what degree do the top-n keywords from our
approach and the standard approach match the key-
words chosen by human experts?

To what degree does the order of the top-n keywords
from our approach and the standard approach
match the order chosen by human experts?

The rationale behind RQ; is that our approach should
extract the same set of keywords that a human expert would
select to summarize a method. Note that human experts rate
keywords subjectively, so we do not expect the human
experts in our study to agree on every keyword, and the
experts may not normally limit themselves to keywords
within one method. Nevertheless, a stated goal of our
approach is to improve over the state-of-the-art approach
(e.g., VSM tffidf [19]), so we measure both approaches
against multiple human experts. In addition to extracting
the same set of keywords as the experts, our approach
should extract the keywords in the same order. The order of
the keywords is important because a summarization tool
may only choose a small number of the top keywords that
are most-relevant to the method. Therefore, we pose RQg to
study this order.

RQs

RODEGHERO ET AL.: AN EYE-TRACKING STUDY OF JAVA PROGRAMMERS AND APPLICATION TO SOURCE CODE SUMMARIZATION

7.2 Methodology

To answer our research questions, we conducted a user
study in which human experts read Java methods and
ranked the top five most-relevant keywords from each
method. We chose five as a value for the top-n to strike a
balance between two factors: First, we aimed to maximize
the number of keywords that our approach can suggest to a
summarization tool. However, a second factor is that, dur-
ing pilot studies, fatigue became a major factor when
human experts were asked to choose more than five key-
words per method, after reading several methods. Because
fatigue can lead to innaccurate results, we limited the key-
word list size to five.

During the study, we showed the experts four Java meth-
ods from six different applications, for a total of 24 methods.
We used the same six applications that were selected for the
eye-tracking study in Section 4.2.2. Upon starting our study,
each expert was shown four randomly-selected methods
from a randomly-selected application. The expert read the
first method, then read a list of the keywords in that method.
The expert then chose five of those keywords that, in his or
her opinion, were most-relevant to the tasks performed by
the method. The expert also rank ordered those five key-
words from most-relevant to least-relevant. After the expert
finished this process for the four methods, we showed the
expert four more methods from a different application, until
he or she had ranked keyword lists for all 24 methods. For
the purpose of reproducibility, we have made our evaluation
interface available via our online appendix.

7.2.1 Participants

To increase generalizability of the results, the participants in
this study were different than the participants in the eye-
tracking study. We recruited nine human experts who were
skilled Java programmers among graduate students in the
Computer Science and Engineering department at the Uni-
versity of Notre Dame and other universities. These partici-
pants had an average of 6.2 years of Java experience, and
10.5 years of general programming experience.

7.2.2 Evaluation Metrics and Tests

To compare the top-n lists for RQs, we used one of the same
keyword list comparison metrics we used in Section 5.1: over-
lap. For RQg, to compare the lists in terms of their order, we
compute the minimizing Kendall tau distance, or K,,;,, between
the lists. This metric has been proposed specifically for the
task of comparing two ordered top-n lists [64], [65], and we
follow the procedure recommended by Fagin et al. [64]: For
each top-n list for a Java method from a human expert, we cal-
culate the K,,;, between that list and the list extracted by our
approach. We also calculate the K, between the expert’s
list and the list from the state-of-the-art approach. We then
compute the K,,;, value between the list from our approach
and the list from the state-of-the-art approach.

The results of this procedure are three sets of K,,;, values
for each configuration of our approach (Eye4, Eyep, and
Eyec): one between human experts and our approach, and
one between our approach and the state-of-the-art approach.
We also create one set of K,;, values between human experts
and the state-of-the-art approach. To compare these lists, we

1045

use a two-tailed Mann-Whitney statistical test [66]. The
Mann-Whitney test is non-parametric, so it is appropriate for
this comparison where we cannot guarantee that the distri-
bution is normally distributed. The result of this test allows
us to answer our research question by determining which
differences are statistically-significant.

7.2.3 Threats to Validity

Our study carries threats to validity, similar to any evalua-
tion. One threat is from the human experts we recruited.
Human experts are susceptible to fatigue, stress, and errors.
At the same time, differences in programming experience,
opinions, and personal biases can all affect the answers
given by the experts. We cannot rule out the possibility that
our results would differ if these factors were eliminated.
However, we minimize this threat in two ways: first, by
recruiting nine experts rather than relying on a single
expert, and second by using statistical testing to confirm the
observed differences were significant.

Another key source of threat is in the Java source code that
we selected for our study. It is possible that our results would
change given a different set of Java methods for evaluation.
We mitigated this threat by selecting the methods from six
different applications in a wide range of domains and sizes.
We also randomized the order in which we showed the
applications to the study participants, and randomized the
methods which we selected from those applications.
The purpose of this randomization was to increase the vari-
ety of code read by the participants, and minimize the effects
that any one method may cause in our results. We realize
that we did not also have any randomized selection of key-
words in addition to our intelligent selection of keywords in
order to further introduce randomization and the possibility
of doubt. However, we believe that this small addition of
randomness would not have significantly affected our
results. In addition, we released all data via our online
appendix so that other researchers may reproduce our work.

8 COMPARISON STUDY RESULTS

In this section, we present the results of the evaluation of
our approach. We report our empirical evidence behind,
and answers to, RQ5 and RQ.

8.1 RQj;: Overlap of Keyword Lists

Our approach outperformed the default VSM tffidf
approach in terms of overlap. The best-performing configu-
ration of our approach was Eyec. It extracted top-five key-
word lists that contain, on average, 76 percent of the
keywords that programmers selected during the study. In
other words, almost four out of five of the keywords
extracted by Eyec were also selected by human experts. In
contrast 67 percent of the keywords, just over three of five,
from VSM,.; were selected by the programmers. Table 3
shows overlap values for the remaining configurations of
our approach. Values for columns marked “Users” are aver-
ages of the overlap percentages for all keyword lists from
all participants for all methods. For other columns, the
values are averages of the lists for each method, generated
by a particular approach. For example, 94 percent of the

1046 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.41, NO.11, NOVEMBER 2015
TABLE 3 TABLE 4
Data for RQ; Data for RQq

Users VSMe s Eyeq Eyep Eyec Users VSMyes Eyey Eyep Eyec
Users 1.00 0.67 0.72 0.75 0.76 Users 0.00 0.54 0.50 0.46 0.43
VSMy.s 0.67 1.00 0.90 0.84 0.78 VSMy.s 0.54 0.00 0.20 0.31 0.40
Eyey 0.72 0.90 1.00 0.94 0.88 Eyey 0.50 0.20 0.00 0.15 0.27
Eyep 0.75 0.84 0.94 1.00 094 Eyep 0.46 0.31 0.15 0.00 0.16
Eyec 0.76 0.78 0.88 0.94 1.00 Eyec 0.43 0.40 0.27 0.16 0.00
Overlap for top-five lists. Kinin for top-five lists.

keywords in lists generated by Eyep were also in lists gener-
ated by Eyec.

To confirm the statistical significance of these results, we
pose three hypotheses (H;o, Hi1, and H;») of the form.

H, The difference between the overlap values for key-
word lists extracted by [Eyes / Eyep / Eyec] to the
programmer-created keyword lists, and the overlap
values of lists extracted by VSM,.; to the program-
mer-created lists is not statistically-significant.

For brevity, we only test hypotheses for overlap values
that are compared to human-written keyword lists. The
results of these tests are in Table 5. We rejected all three
hypotheses because the Z value exceeded Z,,;; for p less than
0.05. Therefore, our approach’s improvement in overlap, as
compared to VSMy,y, is statistically-significant. We answer
RQs by finding that overlap increases by approximately
9 percent from the default VSM tf/idf approach (67 percent)
to our best-performing approach, Eyec (76 percent).

Fig. 4a depicts a pattern we observed in overlap with the
expert-created lists: Eyes, Eyep, and Eyec progressively
increase. This pattern reflects the progressively-magnified
differences in weights for the three configurations of our
approach (see Section 6). As the weight differences are
increased, the approach returns keyword lists that more-
closely match the keyword lists written by human experts.

0.s

07 pa

0.6

0.5 T T T 1

(a) Overlap.

0.6

05 -

0.4

D,3 T T I 1
VSM z,¢ Eye y Eyep Eyec

Fig. 4. Overlap and K,,;,, values for the default approach and three con-
figurations of our approach. For overlap, higher values indicate higher
similarity to the lists created by participants in our study. For K,,,;,,, lower
values indicate higher similarity. Eye. has the best performance for both
metrics.

This finding is strong evidence that some areas of code
should be prioritized over other areas for summarization. We
expand on the implications of these findings in Section 11.

8.2 RQg: Keyword List Order

Eyec was the best-performing approach in terms of the order
of the keyword lists. We found statistically-significant
improvement by the approach over the default VSM tf/idf
approach in terms of K,,;;,, which we use to measure simi-
larity of list order (see Section 7.2.2). Table 4 presents the
K,in values of VSMy., Eyey, Eyep, and Eyec compared to
the human-written values, and compared to each other. The
K,in distance between the lists from Eye~ was 0.43 on aver-
age. This distance compares to 0.54 for VSM,. ;. Configura-
tions with similar weights return similar keyword lists; the
K,,in distance between Eye, and Eyep is 0.15. Likewise,
VSM,.s returns lists most-similar to Eyey (0.20 distance),
which has the least-exaggerated weights. Eyec returned the
lists most like those written by the human experts.

The differences in K,,;, between our approach and the
default approach are statistically-significant. We tested
the statistical-significance using the same procedure as in
the previous section. We posed three hypotheses (H;3, Hi4,
and H;;) of the form:

H, The difference between the K,,, values for key-
word lists extracted by [Eyes / Eyep / Eyec] to
the programmer-created keyword lists, and the
K,in values of lists extracted by VSM, to the pro-
grammer-created lists is not statistically-significant.

We rejected all three hypotheses based on the values in
Table 5. Therefore, our approach improved over the default
approach in terms of K,,,;, by a significant margin. The inter-
pretation of this finding is that the order of the keyword lists
returned by our approach more-closely matched the order of
the keyword lists written by programmers in our study, than
the order of the lists from VSMy, ;. Our answer to RQg is that
the best-performing approach, Eyec, improves over VSM.¢
by approximately 11 percent in terms of K,,,;, (0.54 — 0.43).
We observed a similar pattern in our analysis of RQg as for
RQs. As Fig. 4b illustrates, the K,,,;,, values decrease progres-
sively for Eye,, Eyep, and Eyec. As the weights increase for
keywords in different areas of code, the order of the keyword
lists more-closely matches the order of the lists written by
programmers. In other words, the quality of the keyword
lists improves if those lists contain keywords from some
areas of code instead of others. Our approach emphasizes
keywords from areas of code that programmers view as
important. This emphasis lead to a statistically-significant
improvement. Eyec had the most-aggressive set of weights

RODEGHERO ET AL.: AN EYE-TRACKING STUDY OF JAVA PROGRAMMERS AND APPLICATION TO SOURCE CODE SUMMARIZATION 1047
TABLE 5
Statistical Summary of the Results for RQ; and RQg
RQ Metric H Approach ~ Samples z n Vari. U Uecapt Uvari A Zerit p
Hy Eyeu 170 0.800 0.719 0.030 6,725 3,698 234964 6.246 1.96 <1le-3
VSMy.s 170 0.600 0.671 0.027
RQs Overlap Hy Eyep 170 0.800 0.749 0.029 9,092 5175 331,605 @ 6.802 1.96 <1le-3
VSM ey 170 0.600 0.671 0.027
Hy, Eyec 170 0.800 0.761 0.033 9,628 5727 360,607 6.496 1.96 <1le-3
VSMg. s 170 0.600 0.671 0.027
His Eyeq 170 0489 0498 0.036 3519 6,878 406,567 -5268 1.96 <1le-3
VSM.s 170 0.533 0.545 0.032
RQs Kuin Hy, Eyep 170 0467 0460 0044 3,028 7,222 41269 -6529 196 <le-3
VSMy.s 170 0.533 0.545 0.032
Hi Eyec 170 0444 0425 0244 2971 7254 412950 -6.664 1.96 <1le-3
VSM.s 170 0.533 0.545 0.032

Wilcoxon test values are U, Uy, and U, Decision criteria are Z, Z i, and p. A “sample” is a list chosen by a particpant. Testing procedure is identical to Table 1.

for keywords based on code area; it also experienced the
highest level of performance of any approach tested here.

9 “STUBBORN” KEYWORDS

In this section we study a phenomenon we observed in our
study called “stubborn” keywords, which are keywords
that would seem to be keywords that programmers would
use in summaries, but do not. Technically, we define stub-
born keywords to be words that have a high tf/idf score as
well as relatively-long gaze time, but are not included in the
summaries written by programmers. Our definition is
rooted in the idea that our tool, the state-of-the-art tool, and
the programmers’ own eye movements tend to agree on
predictions of which keywords that programmers report as
relevant (see Section 7), but a small subset of these key-
words do not appear in programmer-written summaries
even when all three indicators agree.

Stubborn keywords are not unique to our approach, and
have been reported in related literature on software trace-
ability [67]. Gibiec et al. and Zou et al. identified the cause
as words that appear synonymous to human readers based
on personal experience, but do not appear in official lists of
synonyms and are difficult to detect using automated tools
[67], [68]. A possible unfortunate result of stubborn key-
words for our work is that our approach performs poorly
on certain methods. Evidence that this is occurring is visible
as a substantial tail in the boxplots in Fig. 5: in a small num-
ber of cases, not a single keyword selected by our approach
or the default VSM tffidf approach matched a keyword
selected by a programmer. This section explores the extent
of the problem and attempts to identify the source of the
stubborn keywords.

9.1 Research Questions

The goal of this study is to investigate the degree of the
effect of stubborn keywords on our approach. To this end,
we propose the following four Research Questions:

RQ7; Whatis the degree of correlation between the time that
programmers spend reading a keyword and the likeli-
hood that they will use that keyword in a summary?

What is the prevalence of keywords that have both

high tf/idf scores and long gaze time, but are not

RQs

used in summaries (e.g., the prevalence of stubborn
keywords)?

RQy Do stubborn keywords tend to be program key-
words such as API call names?
RQip Do stubborn keywords tend to be the longest

keywords?

The rationale behind RQ; is that programmers spend
more time reading some keywords than others (see
Section 5), and a common assumption in eye-tracking litera-
ture is that the words that programmers spend more time
reading are more important for comprehension [41], [44].
However, an open question is whether programmers are
more likely to use a keyword in a summary if they spend
more time reading that keyword in the code. It is important
to answer this question for automatic documentation genera-
tion because it would provide further evidence that the data
we collect about programmer eye movements is useful for
predicting which keywords should be included in summa-
ries. In other words, if programmers read a type of keyword
in code more heavily than other types, then automatic docu-
mentation generation tools should use those keywords in
summaries.

0.8 T

0.6 4

0 2 1 0

Eyec VSM g Eyer VSM g

Fig. 5. Boxplots comparing VSM,.; with Eye., the best performing
configuration of our approach. Each datapoint in each boxplot repre-
sents one K,,;,, or Overlap value. That value is calculated between two
keyword lists: one generated by the given approach for a method, and
one written by a participant in our study for the same method. The points
for K,,;, for Eyec are concentrated at lower values, and the points for
Overlap at higher values, suggesting better performance than VSM,;.

1048

Likewise, the rationale behind RQy is that, even if a corre-
lation exists between gaze time and keyword usage in sum-
maries, a certain subset of keywords (e.g., the “stubborn”
keywords) may violate the correlation. We found limited
evidence that stubborn keywords exist in Section 7, but not
enough evidence to draw a conclusion about the extent of
stubborn keywords. It is important to know the extent
because it represents a performance limitation for both our
tool and for previous state-of-the-art tools.

We pose RQy to explore one possible explanation of the
stubborn keywords, in light of related work that suggests
API calls to be important keywords for code comprehension
[69], [70], [71]. Therefore, it is possible that these keywords
could be the “synonymous” keywords suggested as stub-
born keywords by Zou et al. [68]. If API calls are a major
source of the stubborn keywords, it may be possible to
improve the performance of automatic documentation gen-
erators by filtering API calls from summaries.

Additionally, we pose RQy(to explore another possible
explanation of the stubborn keywords, considering related
work suggesting that the length of identifiers affects the
overall visibility and usage of that identifier [63]. Thus,
these keywords could be viewed for extended periods of
time simply due to their length. Another possibility is that
these complex keywords are multi-word identifiers that are
being used in summaries in their separated form—splitting
may not detect all of these, for example “primaryctrlbtn” to
refer to “primary control button.” If long keywords are gen-
erally not used in summaries, then automatic documenta-
tion generators could be improved by running some pre-
processing such as abbreviation detection on these long key-
words before building summaries.

9.2 Methodology

This section describes the methodology we follow to study
RQ7, RQg, RQy, and RQqq. First we collect the summaries
written by programmers in our eye-tracking study. Then,
according to the data collection procedure in the next sec-
tion, we pre-process the keywords from those summaries
and the keywords from source code.

For RQy, we divide the keywords into two groups: words
that are “longer viewed” and words that are viewed close to
the average amount. Section 9.2.2 explains our procedure
for determining which words are “longer viewed”, but the
idea is that some keywords are viewed well above the aver-
age amount of time. We would expect these words to be
important for comprehension, and therefore appear in the
summaries, according to related eye-tracking literature (see
Section 9.1). For each Java method, we extract all keywords.
Then, we compute the percentage of those keywords that
were “longer viewed” and which were not. Then, we com-
pute the percentage of “longer viewed” words that were
used in summaries, and the percentage of the remaining
words that were used in summaries. The result is a set of
two percentages for each Java method. If the percentage is
higher for “longer viewed” keywords, it implies that those
keywords are more likely to be used in summaries. To
determine if the percentage is higher by a significant mar-
gin, we use a statistical test as described in Section 9.2.3.

For RQg, we extracted keywords which were selected by
the VSM tffidf approach for summaries in our earlier

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41,

NO. 11, NOVEMBER 2015
studies, and we selected from these keywords those words
which were also “longer viewed.” In other words, we com-
puted the intersection of the set of keywords with high tf/idf
scores and high gaze time. Then, for each Java method, we
calculated the percent of those keywords that the pro-
grammers did not use in a summary for that method. The
result was a set of the “stubborn keywords” for each
method and a percent of each method consisting of those
stubborn keywords. We then analyze and report descriptive
statistics of those percentages for the Java methods.

For RQy, we obtained a list of keywords from method
names in the official Java API. Then we calculated the size
of the intersection of these “API keywords” and the stub-
born keywords for each Java method, and computed
descriptive statistical data.

For RQyy, we computed the average keyword lengths in
both the source code and the programmer summaries and
compared the lengths using a statistical hypothesis test. The
keywords from source code only included keywords with
long gaze times.

9.2.1 Data Collection

We collected the summaries of Java methods that pro-
grammers wrote during our study in Section 4. We also use
the Java methods from that study and apply the same pre-
processing to extract keywords from both the summaries
and from the Java methods. We obtained the list of Java API
method names from the official Java documentation proc-
essed in related literature [72].

9.2.2 Definition of “Longer-Viewed”

The “longer-viewed” keywords are the keywords in source
code that programmers spend the most time reading. We
measure the time programmers read each keyword as gaze
time, and “longer-viewed” keywords are those words with
higher gaze time. To determine which keywords belong to
the longer-viewed group, we defined a cutoff point of 3,000
milliseconds. If programmers, on average, read a keyword
for longer than 3,000 milliseconds, we include that keyword
as longer-viewed.

We decided on this cutoff point using a K-medoids clus-
tering algorithm. We set up the algorithm to create two clus-
ters based on the gaze time data: one cluster for longer-
viewed words and one cluster for all others. K-medoids is an
appropriate algorithm for our analysis because K-medoids is
less sensitive to outliers than K-means or other strategies
[73], [74], and our data contains a number of outliers due to
eye fixations, visible in Fig. 6 as a tail extending to 20,000
milliseconds. Our cutoff point of 3,000 milliseconds is based
on the cluster split point given by the K-medoids algorithm.

9.2.3 Statistical Analysis

To determine statistical significance in RQ; through RQ;,
we use a Wilcoxon signed-rank test [61] as in Section 4. This
test is appropriate because our data are paired, and because
we cannot guarantee that our data are normally distributed.

10 KEYWORD ANALYSIS RESULTS

In this section, we present the results of our analysis. We
report our empirical evidence behind and answers to RQy7,
RQs, RQy, and RQyg.

RODEGHERO ET AL.: AN EYE-TRACKING STUDY OF JAVA PROGRAMMERS AND APPLICATION TO SOURCE CODE SUMMARIZATION

500
400

300

quency

& 200

Fr

100

PR T

9500 14000 18500
Gaze Time

|

5000

Fig. 6. Distribution of keywords for different gaze times. “Longer-viewed”
keywords are those to the right of the 3,000 millisecond cutoff marked
with a dashed red line.

10.1 RQ;: Gaze Time and Keyword Usage

We found statistically significant evidence that there are
fewer “longer-viewed” keywords contained in method sum-
maries compared to all other keywords. On average, the per-
centage of “longer-viewed” keywords used in method
summaries was 12 percent, while the percentage of all source
code keywords used in method summaries was 16 percent.
Note the differences in Fig. 7. This suggests that there is little
to no correlation between the time spent reading a keyword
and the likelihood of its use in a method summary.

The following describes the procedure we followed to
draw this conclusion: Consider the statistical data in Table 6.
We compared the percentages of “longer-viewed” key-
words in summaries and overall keywords in summaries.
To compute the “longer-viewed” percentage, we divided
the number of “longer-viewed” keywords in summaries
by the total number of “longer-viewed” keywords. Simi-
larly, to compute the overall percentage, we divided the
number of keywords in both the summaries and source
code by the total number of source code keywords. We then
posed Hjg as follows:

Hy; The percentage of “longer-viewed” keywords used
in summaries, out of all “longer-viewed” keywords,
is not significantly less than the percentage of all
keywords used in summaries, out of all source code
keywords.

Using the Wilcoxon test, we rejected the null hypotheses

1049
1 ~
0.8
L] Lo}
0.6
L] [e)
0.4 & -
O
0.2
D .

Long-viewed Owerall

Fig. 7. Data for RQ7. The box plot to the left represents the percentage of
“longer-viewed” keywords used in summaries per participant per
method. The box plot to the right represents the percentage of all key-
words used in summaries per participant per method. The white line is
the mean. The black box is the lower quartile and the gray box is the
upper quartile. The thin line extends from the minimum to the maximum
value, excluding outliers.

Therefore, we found that the degree of correlation between
long gaze times for a keyword and its use in a method sum-
mary is not significant.

10.2 RQg: “Stubborn” Keyword Prevalence
We found statistically significant evidence that keywords
programmers used in their method summaries generally
have higher tf/idf scores than keywords with high gaze
times that programmers left out of their method summaries.
The following describes the procedure we followed to
draw this conclusion: Consider the statistical data in Table 6.
We compared the VSM (ffidf scores of keywords used in
summaries, both “longer-viewed” and those with smaller
gaze times, to the tf/idf scores of all of the unused “longer-
viewed” keywords. We then posed H7 as follows:

(see RQ; in Table 6). These results indicate that the pro- H;; The (f/idf scores for keywords used in summaries
grammers did not necessarily use keywords that they read are not significantly higher than the scores of
for an extended period of time in their method summaries. “longer-viewed” keywords not used in summaries.
TABLE 6
Statistical Summary of the Results for RQ;, RQg, and RQq
RQ H Approach Samples T “w Vari. U Uecapt Uvari Z Zorit P
I Longer-viewed 98 0.075 0.022 0.0196 604 1,540.5 40,303.75 375 165 <1le3
RQ7 16 Overall 98 0.138 0.095 0.0128
R I Used 259 0.304 0.3034 0.0522 544275 34,390.5 3043,296.51 3.75 1.65 <le3
Qs 17 Unused 379 0.137 0.13687 0.0136
R I API 200 0.098 0.09794 0.003438 16,4105 11,245 569,606.82 375 1.65 <le-3
Qo 18 Non-API 179 0.188 0.18753 0.022609
SCNPS 258 6.08 6.08 1.44 100,104 125,518 844,57691 375 1.65 <1le-3
RQuo His SCNLV 388 943 943 441

Wilcoxon test Values are U, Uy, and Uygyi. Decision criteria are Z, Z,i;, and p. The “samples” are taken from the summaries written by participants.

1050

TABLE 7
Table Showing the Average Lengths of Keywords
Used in Various Places

sC PS
7.22 6.54

SCNPS
6.08

LV
8.46

SCNLV
9.43

Source code (SC), Programmer summaries (PS), and
“Longer-viewed” (LV) keywords are all represented here, as
well as the intersection of source code and programmer sum-
maries keywords and the intersection between source code
and “longer-viewed” keywords. The averages of significant
interest here are SCNPS and SCNLV.

Using the Wilcoxon test, we rejected the null hypotheses
(see RQg in Table 6). These results indicate that the
keywords used in method summaries tended to have higher
tf/idf scores than the “longer-viewed” keywords excluded
from summaries, regardless of the length of their gaze
times. This reconfirms the belief that VSM #f/idf scores are a
reliable indicator for possible inclusion in summaries and
reveals that, on average, the prevalence of “stubborn” key-
words is relatively low.

10.3 RQq: “Stubborn” APl Keywords
We found statistically significant evidence that keywords
that can be considered “stubborn” tend not to be API calls.
The following describes the procedure we followed to
draw this conclusion: Consider the statistical data in Table 6.
We compared the VSM tf/idf scores of “longer-viewed” API
keywords not used in summaries to the ff/idf scores of all of
the “longer-viewed” non-API keywords also not used in
summaries. We then posed Hg as follows:

H,s The tf/idf scores for non-API keywords are not sig-
nificantly higher than the scores of Java API names
for “longer-viewed” keywords.

Using the Wilcoxon test, we rejected the null hypotheses
(see RQy in Table 6). These results indicate that “stubborn”
keywords are generally non-API keywords. Also, since the
ratio, on average, of API to non-API keywords in each method
was almost 1:1, we believe that a greater use of one type of

keyword over another did not significantly affect the result.

10.4 RQ;;: Long Keywords

We found statistically significant evidence that long key-
words, that were also “longer-viewed”, are used more often
in the source code than they are in programmer summaries.
We interpret this finding as evidence that the length of the
keywords could reduce their comprehensibility, as pointed
out by Liblit et al. [63], and thus reduce the possibility that
those words are used in summaries. Future summarization
tools may adapt to this situation by making efforts to reduce
the length and complexity of keywords extracted from source
code, such as by using abbreviation detection and splitting.

The following describes the procedure we followed to
draw this conclusion: Consider the statistical data in Table 6.
We compared the lengths of the “longer-viewed” keywords
and the keyword lengths in the programmer summaries.
The averages of these lengths, and some relevant others,
can be seen in Table 7. We then posed Hg as follows:

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41,

NO. 11, NOVEMBER 2015

Hig The average length of keywords in source code, that
also had long gaze times, is not significantly greater
than the average length of keywords in summaries.

Using the Wilcoxon test, we rejected the null hypotheses
(see RQyp in Table 6). These results indicate that “longer-
viewed” keywords in source code are generally much lon-
ger than keywords used in programmer summaries.

10.5 Summary of Keyword Analysis Results

We derive two main interpretations of our keyword analy-
sis results. First, if a keyword is considered “longer-view-
ed”, it is not guaranteed to be included in programmers’
method summaries. We base this on the finding that there is
no significant correlation between “longer-viewed” key-
words and keywords used in summaries (H5). Second,
“stubborn” keywords are not prevalent enough to be the
cause of the lack of “longer-viewed” keywords in summa-
ries. This is based on our finding that keywords used in
summaries have significantly higher VSM tf/idf scores than
the keywords that were “longer-viewed” and left out of
summaries (H;7). However, for those “stubborn” keywords
that do exist, they mostly do not consist of commonly used
Java API function calls. This is based on our finding that the
tflidf scores for “longer-viewed” non-API keywords are sig-
nificantly higher than those for API keywords (H;s). Our
conclusion is that, considering the results from our eye-
tracking study, there must be further reasons beyond
“stubborn” keywords that explains the lack of “longer-
viewed” keywords in method summaries. One possible fur-
ther explanation we suspected is the possible complexities
caused by the length of the “long-viewed” keywords. We
found that “longer-viewed” keywords tend to have more
characters than keywords used in programmer summaries
(H19). This would mean that determining the complexities
behind the length of these keywords could significantly
help improve the process for generating summaries.

10.6 AQualitative Analysis

In order to determine reasons for why there is the discrep-
ancy shown in RQ; between long gaze times and the use of
keywords in programmers’ method summaries, we manu-
ally scanned the summaries for patterns. We looked for any
and all forms of “longer-viewed” keyword use. We discov-
ered that many of the words in the summaries were related
to the “longer-viewed” keywords, but the exact keyword
was not used. Instead, the summary words were separated
versions of the keywords, which were multi-word identi-
fiers. Here, a separated version of a keyword is when most
or all of the inner words are used. The following common
examples of this phenomenon show how some pro-
grammers include keywords into a method summary with-
out actually using it.

e getcolumnnameswithprefix
“gets the column names with the given prefix”
e setvisible
“then makes it visible”
e isclassbeingdefined
“checks to see if the current class is being defined”
As can be seen, rather than using keywords directly,
programmers used phrases that contained parts of the

RODEGHERO ET AL.: AN EYE-TRACKING STUDY OF JAVA PROGRAMMERS AND APPLICATION TO SOURCE CODE SUMMARIZATION

keyword. This makes sense since many of the keywords are
long combinations of common, everyday words. This also
falls into the category of one of the complexities behind the
length of many “longer-viewed” keywords, which we dis-
covered to be important in RQ;o. This phenomenon would
suggest that distinguishing a keyword as “longer-viewed”
is still useful, but a different analysis technique is necessary
to determine how these keywords are used in practice.
Designing this analysis technique is beyond the scope of
this paper, but points to a key area of our future work.

11 DISCUSSION

Our paper advances the state-of-the-art in three key direc-
tions. First, we contribute to the program comprehension lit-
erature with empirical evidence of programmer behavior
during source code summarization. We recorded the eye
movements of 10 professional programmers while they read
and summarized several Java methods from six different
applications. We have made all raw and processed data
available via an online appendix (see Section 4.2.7) to pro-
mote independent research. At the same time, we have ana-
lyzed these data and found that the programmers constantly
preferred to read certain areas of code over others. We found
that control flow, which has been suggested as critical to
comprehension during data-flow visualization [57] and soft-
ware maintenance [2], was not read as heavily as other code
areas during summarization. Method signatures and invoca-
tions were focused on more-often. This finding seems to con-
firm a recent study [6] that programmers avoid reading code
details whenever possible. In contrast, the programmers
seek out high-level information by reading keywords from
areas that the programmers view as likely to contain such
information [7]. Our study sheds light on the viewing pat-
terns that programmers perform during summarization, in
addition to the areas of code they view.

Second, we show that the keywords that programmers
read are actually the keywords that an independent set of
programmers felt were important. Our eye-tracking study
provided evidence that programmers read certain areas of
code, but that evidence alone is not sufficient to conclude
that keywords from those areas should be included in source
code summaries—it is possible that the programmers read
those sections more often because they were harder to under-
stand. The tool we presented in Section 6 is designed to study
this problem. It is based on a state-of-the-art approach [19]
for extracting summary keywords from code, except that our
tool favors the keywords from the sections of source code
that programmers read during the eye-tracking study.

In an evaluation of this tool, we found that an independent
set of programmers preferred the keywords from our tool as
compared to the state-of-the-art tool. This finding confirms
that the sections of code that programmers read actually con-
tain the keywords that should be included in summaries.

Third, we reveal that there are further steps that need to be
taken in order to create usable summaries. Although we have
seen that certain keywords are more important for summari-
zation to programmers, we cannot be sure that they would
use those keywords in method summaries. We analyzed the
written summaries of the 10 professional programmers to
determine exactly what keywords they used. At first glance, it

1051

appears that programmers do not necessarily favor keywords
from certain sections over others when writing method sum-
maries. However, we discovered that a major reason for this
phenomenon is that keywords in code are not very usable as
words in an English paragraph. Many summaries contained
phrases using pieces of the important keywords, but written
in a shorter, more readable way. This discovery shows that
the important keywords found using our methods should be
indirectly included in method summaries after pre-process-
ing them to make them into English phrases.

An additional benefit of this work is the improvement of
existing source code summarization tools. While we have
demonstrated one approach, progressive improvements to
other techniques may be possible based on this work. Differ-
ent source code summarization tools have generated natural
language summaries, instead of keyword lists [13], [14], [15],
[16], [17]. These approaches have largely been built using
assumptions about what programmers need in summaries,
or from program comprehension studies of tasks other than
summarization. Our work can assist code summarization
research by providing a guide to the sections of code that
should be targeted for summarization. At the same time, our
work may assist in creating metrics for source code comment
quality [75] by providing evidence about which sections of
the code the comments should reflect.

12 FUTURE WORK

Although we have completed this study, we do not believe
that everything that we could explore or discover has been
covered here. Therefore, there is a plethora of possible future
work that we would like to mention in order to keep the dis-
cussion open. First, a helpful addition to this work would be
to include an analysis of the effects of long, multi-word iden-
tifiers on the gaze times, fixations, and regressions during a
method. This was shown to be significant during our explo-
ration of stubborn keywords. One could also include this
addition to the tool we created and evaluated during this
study to explore if the weights could be modified based on
keyword length in order to compensate for these effects.
Second, we believe that a logical next step to this work would
be to explore if the results found with these professional pro-
grammers also applies to programming novices. An identi-
cal, but separate novice study could be conducted and a
statistical comparison could be made to judge the effects of
programming experience. Third, since we limited our study
to general summaries written by the average developer, an
exploration of the effects of different types of developers
could produce interesting, possibly incomparable results.
This exploration could include a comparison between the
eye-tracking results from several differing types, including
testers, security experts, database experts, etc. Fourth, we
used complete, well-formed code, all written in English and
all without any internal comments. However, this is also not
the most realistic scenario to be expected, especially in an
open source environment. Therefore, we believe an impor-
tant future work would be to explore the effects of incom-
plete, semi-documented, and/or non-English code could
have on the results we have found here. Last, we believe that
simply delving deeper into the work we have presented here
could be possible future work. Looking more into stubborn

1052

keywords, especially if multi-word identifiers are a focus,
could produce better conclusions than we could provide in
this study. Also, more fine-grained development of our small
tool, such as creating a regression model for weights rather
than hand-picking them, could be beneficial. In general, we
believe that further exploration into this area is important for
the several new techniques and tools to come.

13 CONCLUSION

We have presented an eye-tracking study of programmers
during source code summarization, a tool for selecting key-
words based on the findings of the eye-tracking study, and
an evaluation of that tool. We have explored six research
questions aimed at understanding how programmers read,
comprehend, and summarize source code. We showed how
programmers read method signatures more-closely than
method invocations, and invocations more-closely than con-
trol flow. These findings led us to design and build a tool for
extracting keywords from source code. Our tool outper-
formed a state-of-the-art tool during a study with an
independent set of expert programmers. The superior perfor-
mance of our tool reinforces the results from our eye-tracking
study: not only did the programmers read keywords from
some sections of source code more-closely than others during
summarization, but they also tended to use those keywords
in their own summaries. We also observed that programmers
sometimes did not use these exact keywords, but instead
used variations of or sub-words included in these keywords.

ACKNOWLEDGMENTS

The authors thank and acknowledge the 10 Research
Programmers at the Center for Research Computing at
the University of Notre Dame for participating in our
eye-tracking study. They also thank the nine graduate
students and programmers who participated in our fol-
low-up study of our approach. They also sincerely thank
Nigel Bosch and Sidney D’Mello for their contributions
to previous editions of this paper.

REFERENCES

[1] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental
models: A study of developer work habits,” in Proc. 28th Int. Conf.
Softw. Eng., New York, NY, USA, 2006, pp. 492-501.

[2] A.].Ko, B. A. Myers, M.]. Coblenz, and H. H. Aung, “An explor-
atory study of how developers seek, relate, and collect relevant
information during software maintenance tasks,” IEEE Trans.
Softw. Eng., vol. 32, no. 12, pp. 971-987, Dec. 2006.

[3] . Singer, T. Lethbridge, N. Vinson, and N. Anquetil, “An exami-
nation of software engineering work practices,” in Proc. Conf. Cen-
tre Adv. Studies Collaborative Res., 1997, p. 21.

[4] A. Lakhotia, “Understanding someone else’s code: Analysis of
experiences,” J. Syst. Softw., vol. 23, no. 3, pp. 269-275.

[5] R.K. Fjeldstad and W. T. Hamlen, “Application program mainte-
nance study: Report to our respondents,” in Proc. GUIDE 48, Apr.
1983, , pp. 13-30.

[6] T.Roehm, R. Tiarks, R. Koschke, and W. Maalej, “How do profes-
sional developers comprehend software?” in Proc. Int. Conf. Softw.
Eng., 2012, pp. 255-265.

[7]1]. Starke, C. Luce, and J. Sillito, “Searching and skimming: An
exploratory study,” in Proc. IEEE Int. Conf. Softw. Maintenance,
2009, pp. 157-166.

[8] D. Kramer, “API documentation from source code comments: A
case study of Javadoc,” in Proc. 17th Annu. Int. Conf. Comput. Docu-
mentation, New York, NY, USA, 1999, pp. 147-153.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41,

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[171]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

NO. 11, NOVEMBER 2015

S. C. B. de Souza, N. Anquetil, and K. M. de Oliveira, “A study of
the documentation essential to software maintenance,” in Proc.
23rd Annu. Int. Conf. Des. Commun.: Documenting Designing Perva-
sive Inf., New York, NY, USA, 2005, pp. 68-75.

M. Kajko-Mattsson, “A survey of documentation practice within
corrective maintenance,” Empirical Softw. Eng., vol. 10, no. 1,
pp- 31-55, Jan. 2005.

B. Fluri, M. Wursch, and H. C. Gall, “Do code and comments co-
evolve? On the relation between source code and comment
changes,” in Proc. 14th Working Conf. Reverse Eng., Washington,
DC, USA, 2007, pp. 70-79.

J. Sillito, G. C. Murphy, and K. De Volder, “Asking and answering
questions during a programming change task,” IEEE Trans. Softw.
Eng., vol. 34, no. 4, pp. 434-451, Jul. 2008.

H. Burden and R. Heldal, “Natural language generation from
class diagrams,” in Proc. 8th Int. Workshop Model-Driven Eng., Veri-
fication Validation, New York, NY, USA, 2011, pp. 8:1-8:8.

S. Mani, R. Catherine, V. S. Sinha, and A. Dubey, “Ausum:
Approach for unsupervised bug report summarization,” in Proc.
ACM SIGSOFT 20th Int. Symp. Found. Softw. Eng., New York, NY,
USA, 2012, pp. 11:1-11:11.

L. Moreno, J. Aponte, S. Giriprasad, A. Marcus, L. Pollock, and K.
Vijay-Shanker, “Automatic generation of natural language sum-
maries for java classes,” in Proc. 21st Int. Conf. Program Comprehen-
sion, 2013, pp. 23-32.

G. Sridhara, “Automatic generation of descriptive summary com-
ments for methods in object-oriented programs,” Ph.D. disserta-
tion, Univ. of Delaware, Newark, DE, USA, Jan. 2012.

G. Sridhara, L. Pollock, and K. Vijay-Shanker, “Generating param-
eter comments and integrating with method summaries,” in Proc.
IEEE 19th Int. Conf. Program Comprehension, Washington, DC,
USA, 2011, pp. 71-80.

A. T. T. Ying and M. P. Robillard, “Code fragment summa-
rization,” in Proc. 9th Joint Meeting Found. Softw. Eng., New York,
NY, USA, 2013, pp. 655-658.

S. Haidug, J. Aponte, L. Moreno, and A. Marcus, “On the use of
automated text summarization techniques for summarizing
source code,” in Proc. 17th Working Conf. Reverse Eng., Washing-
ton, DC, USA, 2010, pp. 35-44.

G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K.
Vijay-Shanker, “Towards automatically generating summary
comments for Java methods,” in Proc. IEEE/ACM Int. Conf. Autom.
Softw. Eng., New York, NY, USA, 2010, pp. 43-52.

B. Eddy, J. Robinson, N. Kraft, and J. Carver, “Evaluating source
code summarization techniques: Replication and expansion,” in
Proc. 21st Int. Conf. Program Comprehension, 2013, pp. 13-22.

G. Sridhara, L. Pollock, and K. Vijay-Shanker, “Automatically
detecting and describing high level actions within methods,” in
Proc. 33rd Int. Conf. Softw. Eng., New York, NY, USA, 2011,
pp- 101-110.

R. Holmes and R. J. Walker, “Systematizing pragmatic software
reuse,” ACM Trans. Softw. Eng. Methodol., vol. 21, no. 4,
pp- 20:1-20:44, Feb. 2013.

A.]. Ko and B. A. Myers, “A framework and methodology for
studying the causes of software errors in programming systems,”
J. Vis. Lang. Comput., vol. 16, no. 12, pp. 41-84, 2005.

D. C. Littman, J. Pinto, S. Letovsky, and E. Soloway, “Mental mod-
els and software maintenance,” J. Syst. Softw., vol. 7, no. 4,
pp. 341-355, 1987.

J. Brandt, M. Dontcheva, M. Weskamp, and S. R. Klemmer,
“Example-centric programming: Integrating web search into the
development environment,” in Proc. 28th Int. Conf. Human Factors
Comput. Syst., New York, NY, USA, 2010, pp. 513-522.

G. Kotonya, S. Lock, and J. Mariani, “Opportunistic reuse:
Lessons from scrapheap software development,” in Proc. 11th
Int. Symp. Component-Based Softw. Eng., Berlin, Germany, 2008,
pp- 302-309.

J. W. Davison, D. M. Mancl, and W. F. Opdyke, “Understanding
and addressing the essential costs of evolving systems,” Bell Labs
Tech. J., vol. 5, pp. 44-54, 2000.

S. Mirghasemi, J. J. Barton, and C. Petitpierre, “Querypoint: Mov-
ing backwards on wrong values in the buggy execution,” in Proc.
19th ACM SIGSOFT Symp. 13th Eur. Conf. Found. Softw. Eng., New
York, NY, USA, 2011, pp. 436-439.

J.-P. Kramer, J. Kurz, T. Karrer, and J. Borchers, “Blaze,” in Proc.
Int. Conf. Softw. Eng., Piscataway, NJ, USA, 2012, pp. 1457-1458.

RODEGHERO ET AL.: AN EYE-TRACKING STUDY OF JAVA PROGRAMMERS AND APPLICATION TO SOURCE CODE SUMMARIZATION

[31]

[32]

[33]

[34]

[35]

[36]

[371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[471

[48]

[49]

[50]

[51]

[52]

[53]

S.E. Sim, C. L. A. Clarke, and R. C. Holt, “Archetypal source code
searches: A survey of software developers and maintainers,” in
Proc. 6th Int. Workshop Program Comprehension, Washington, DC,
USA, 1998, p. 180.

E. M. Altmann, “Near-term memory in programming: A Simula-
tion-based analysis,” Int. |. Human-Comput. Studies, vol. 54, no. 2,
pp- 189-210, 2001.

C. Douce, “Long term comprehension of software systems: A
methodology for study,” Proc. Psychol. Programm. Interest Group,
2001, pp. 147-159.

V. M. Gonzélez and G. Mark, “’Constant, constant, multi-tasking
craziness’: Managing multiple working spheres,” in Proc. SIGCHI
Conf. Human Factors Comput. Syst., New York, NY, USA, 2004,
pp- 113-120.

A. Guzzi, “Documenting and sharing knowledge about code,” in
Proc. Int. Conf. Softw. Eng., Piscataway, NJ, USA, 2012, pp. 1535
1538.

A. Forward and T. C. Lethbridge, “The relevance of software doc-
umentation, tools and technologies: A survey,” in Proc. ACM
Symp. Document Eng., New York, NY, USA, 2002, pp. 26-33.

G. Gweon, L. Bergman, V. Castelli, and R. K. E. Bellamy,
“Evaluating an automated tool to assist evolutionary document
generation,” in Proc. IEEE Symp. Vis. Lang. Human-Centric Com-
put., Washington, DC, USA, 2007, pp. 243-248.

L. Bergman, V. Castelli, T. Lau, and D. Oblinger, “Docwizards: A
system for authoring follow-me documentation wizards,” in Proc.
18th Annu. ACM Symp. User Interface Softw. Technol., New York,
NY, USA, 2005, pp. 191-200.

J. Stylos and B. A. Myers, “Mica: A web-search tool for finding
API components and examples,” in Proc. Vis. Lang. Human-Centric
Comput., Washington, DC, USA, 2006, pp. 195-202.

T. Lethbridge,]J. Singer, and A. Forward, “How software engi-
neers use documentation: The state of the practice,” IEEE Softw.,
vol. 20, no. 6, pp. 35-39, Nov./Dec. 2003.

M. E. Crosby and J. Stelovsky, “How do we read algorithms? A
case study,” IEEE Comput., vol. 23, no. 1, pp. 24-35, Jan. 1990.

H. Uwano, M. Nakamura, A. Monden, and K.-i. Matsumoto,
“Analyzing individual performance of source code review using
reviewers’ eye movement,” in Proc. Symp. Eye Tracking Res. Appl.,
New York, NY, USA, 2006, pp. 133-140.

R. Bednarik and M. Tukiainen, “Temporal eye-tracking data: Evo-
lution of debugging strategies with multiple representations,” in
Proc. Symp. Eye Tracking Res. & Appl., New York, NY, USA,
2008, pp- 99-102.

R. Bednarik and M. Tukiainen, “An eye-tracking methodology for
characterizing program comprehension processes,” in Proc. Symp.
Eye Tracking Res. Appl., New York, NY, USA, 2006, pp. 125-132.

N. Ali, Z. Sharafl, Y. Gueheneuc, and G. Antoniol, “An empirical
study on requirements traceability using eye-tracking,” in Proc.
28th IEEE Int. Conf. Softw. Maintenance, Sept 2012, pp. 191-200.

B. Sharif, M. Falcone, and]. I. Maletic, “An eye-tracking study
on the role of scan time in finding source code defects,” in
Proc. Symp. Eye Tracking Res. Appl., New York, NY, USA, 2012,
pp. 381-384.

B. Sharif and J. I. Maletic, “An eye tracking study on camelcase
and under_score identifier styles,” in Proc. IEEE 18th Int. Conf. Pro-
gram Comprehension, Washington, DC, USA, 2010, pp. 196-205.

D. Binkley, M. Davis, D. Lawrie, J. I. Maletic, C. Morrell, and B.

Sharif, “The impact of identifier style on effort and
comprehension,” Empirical Softw. Eng., vol. 18, no. 2, pp. 219-276,
Apr. 2013.

B. Sharif, “Empirical assessment of UML class diagram layouts
based on architectural importance,” in Proc. 27th IEEE Int. Conf.
Softw. Maintenance, Washington, DC, USA, 2011, pp. 544-549.

B. Sharif and J. I. Maletic, “The effects of layout on detecting the
role of design patterns,” in Proc. 23rd IEEE Conf. Softw. Eng. Edu.
Training, Washington, DC, USA, 2010, pp. 41-48.

G. C. Murphy, “Lightweight structural summarization as an aid to
software evolution,” Ph.D. dissertation, University of Washing-
ton, Seattle, WA, USA, Jul. 1996.

S. Zhang, C. Zhang, and M. D. Ernst, “Automated documentation
inference to explain failed tests,” in Proc. 26th IEEE/ACM Int. Conf.
Autom. Softw. Eng., Washington, DC, USA, 2011, pp. 63-72.

R. P. Buse and W. R. Weimer, “Automatic documentation infer-
ence for exceptions,” in Proc. Int. Symp. Softw. Testing Anal., 2008,
pp. 273-282.

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(711

[72]

[73]

[74]

[75]

1053

R. P. Buse and W. R. Weimer, “Automatically documenting pro-
gram changes,” in Proc. IEEEJACM Int. Conf. Autom. Softw. Eng.,
2010, pp. 33-42.

M. Kim, D. Notkin, D. Grossman, and G. Wilson, “Identifying and
summarizing systematic code changes via rule inference,” IEEE
Trans. Softw. Eng., vol. 39, no. 1, pp. 45-62, Jan. 2013.

J. Aponte and A. Marcus, “Improving traceability link recovery
methods through software artifact summarization,” in Proc. 6th
Int. Workshop Traceability Emerging Forms Softw. Eng., New York,
NY, USA, 2011, pp. 46-49.

D. Dearman, A. Cox, and M. Fisher, “Adding control-flow to a
visual data-flow representation,” in Proc. 13th Int. Workshop Pro-
gram Comprehension, Washington, DC, USA, 2005, pp. 297-306.

K. Anjaneyulu and]. Anderson, “The advantages of data flow dia-
grams for beginning programming,” in Proc. 2nd Int. Conf. Intell.
Tutoring Syst., 1992, vol. 608, pp. 585-592.

C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu,
“Portfolio: Finding relevant functions and their usage,” in Proc.
33rd Int. Conf. Softw. Eng., New York, NY, USA, 2011, pp. 111-120.
K. Rayner, A. Pollatsek, and E. D. Reichle, “Eye movements in
reading: Models and data,” Behavioral Brain Sci.,, vol. 26,
pp- 507-518, 2003.

D. A. Wolfe and M. Hollander, “Nonparametric statistical
methods,” New York, 1973.

B. Walters, T. Shaffer, B. Sharif, and H. Kagdi, “Capturing soft-
ware traceability links from developers’ eye gazes,” in Proc. 22nd
Int. Conf. Program Comprehension, New York, NY, USA, 2014,
pp- 201-204.

B. Liblit, A. Begel, and E. Sweeser, “Cognitive perspectives on the
role of naming in computer programs,” in Proc. 18th Annu. Psy-
chol. Programm. Workshop, Sep. 2006.

R. Fagin, R. Kumar, and D. Sivakumar, “Comparing top k lists,” in
Proc. 14th Annu. ACM-SIAM Symp. Discrete Algorithms, Philadel-
phia, PA, USA, 2003, pp. 28-36.

M. S. Bansal and D. Ferndndez-Baca, “Computing distances
between partial rankings,” Inf. Process. Lett., vol. 109, no. 4,
pp- 238-241, Jan. 2009.

M. D. Smucker, J. Allan, and B. Carterette, “A comparison of sta-
tistical significance tests for information retrieval evaluation,” in
Proc. 16th ACM Conf. Inf. Knowl. Manage., 2007, pp. 623-632.

M. Gibiec, A. Czauderna, and J. Cleland-Huang, “Towards min-
ing replacement queries for hard-to-retrieve traces,” in Proc. IEEE/
ACM Int. Conf. Autom. Softw. Eng., New York, NY, USA, 2010,
pp. 245-254.

X. Zou, R. Settimi, and J. Cleland-Huang, “Improving automated
requirements trace retrieval: A study of term-based enhancement
methods,” Empirical Softw. Eng., vol. 15, no. 2, pp. 119-146, Apr.
2010.

D. Hou and D. Pletcher, “An evaluation of the strategies of sort-
ing, filtering, and grouping api methods for code completion,”
in Proc. 27th IEEE Int. Conf. Softw. Maintenance, Sep. 2011,
pp- 233-242.

J. M. Daughtry III and J. M. Carroll, “Perceived self-efficacy and
APIs,” Programming Interest Group, p. 42.

C. McMillan, D. Poshyvanyk, and M. Grechanik, “Recommending
source code examples via API call usages and documentation,” in
Proc. 2nd Int. Workshop Recommendation Syst. Softw. Eng.,
New York, NY, USA, 2010, pp. 21-25.

C. McMillan, M. Grechanik, D. Poshyvanyk, C. Fu, and Q. Xie,
“Exemplar: A source code search engine for finding highly rele-
vant applications,” IEEE Trans. Softw. Eng., vol. 38, no. 5,
pp- 1069-1087, Sep./Oct. 2011.

L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: An Intro-
duction to Cluster Analysis. New York, NY, USA: Wiley, 1990.

H.-S. Park and C.-H. Jun, “A simple and fast algorithm for
k-medoids clustering,” Expert Syst. Appl., vol. 36, no. 2, pp. 3336~
3341, Mar. 2009.

D. Steidl, B. Hummel, and E. Juergens, “Quality analysis of source
code comments,” in Proc. 21st Int. Conf. Program Comprehension,
2013, pp. 83-92.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.41, NO.11, NOVEMBER 2015

Paige Rodeghero is a Computer Science PhD
student at the University of Notre Dame working
under Dr. Collin McMillan. She completed her
Bachelor's Degree at Ball State University with a
major in Computer Science and a minor in Dance
Performance. Her current research focuses pri-
marily on program comprehension and source
code summarization.

Cheng Liu received his PhD in Physics from the
University of lllinois at Urbana-Champaign in
2011. He then joined the Center for Research
Computing (CRC) at the University of Notre
Dame as a research programmer after gradua-
tion. In 2015, he became a computational scien-
tist at the CRC and also a research assistant
professor in the Department of Psychology at
Notre Dame. Dr. Lius research interests include
data analytics, software engineering, cognitive
computing, and applications of statistical model-

Paul W. McBurney is a PhD student in Com-
puter Science at the University of Notre Dame
working under Dr. Collin McMillan. He received
his Bachelor's Degree and Master's Degree in
Computer Science from West Virginia University.
His research interest is Software Engineering
with a focus on automatic documentation and
program comprehension.

Collin McMillan is an Assistant Professor at the
University of Notre Dame. He completed his PhD
in 2012 at the College of William and Mary, focus-
ing on source code search and traceability tech-
nologies for program reuse and comprehension.
Since joining Notre Dame, his work has focused
on source code summarization and efficient
reuse of executable code. Dr. McMillan’s work
has been recognized with the National Science
Foundation’s CAREER award.

ing in psychological and educational measurement.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

